Rust 程序设计语言

title-page.md
commit d94e03a18a2590ed3f1c67b859cb11528d2a2d5c

本书的英文原版作者为 Steve Klabnik 和 Carol Nichols,并由 Rust 社区补充完善。本简体中文译本由 Rust 中文社区翻译。

本书假设你使用 Rust 1.67.1(2023-02-09 发布)或更新的版本。请查看 第 1 章的 “安装” 部分 了解如何安装和升级 Rust。

本书的英文原版 HTML 格式可以在 https://doc.rust-lang.org/stable/book/ 在线阅读;使用 rustup 安装的 Rust 也包含一份英文离线版,运行 rustup docs --book 即可打开。

本书还有一些社区 翻译版本。简体中文译本可以在 https://kaisery.github.io/trpl-zh-cn/ 在线阅读。

本书也有 由 No Starch Press 出版的纸质版和电子版

🚨 想要具有互动性的学习体验吗?试试 Rust Book 的另一个版本,其中包括测验、高亮、可视化等功能https://rust-book.cs.brown.edu

前言

foreword.md
commit 1fedfc4b96c2017f64ecfcf41a0a07e2e815f24f

Rust 程序设计语言的本质实际在于 赋能empowerment):无论你现在编写的是何种代码,Rust 能让你在更为广泛的编程领域走得更远,写出自信。(这一点并不显而易见)

举例来说,那些“系统层面”的工作涉及内存管理、数据表示和并发等底层细节。从传统角度来看,这是一个神秘的编程领域,只为浸润多年的极少数人所触及,也只有他们能避开那些臭名昭著的陷阱。即使谨慎的实践者,亦唯恐代码出现漏洞、崩溃或损坏。

Rust 破除了这些障碍:它消除了旧的陷阱,并提供了伴你一路同行的友好、精良的工具。想要 “深入” 底层控制的程序员可以使用 Rust,无需时刻担心出现崩溃或安全漏洞,也无需因为工具链不靠谱而被迫去了解其中的细节。更妙的是,语言设计本身会自然而然地引导你编写出可靠的代码,并且运行速度和内存使用上都十分高效。

已经在从事编写底层代码的程序员可以使用 Rust 来提升信心。例如,在 Rust 中引入并行是相对低风险的操作,因为编译器会替你找到经典的错误。同时你可以自信地采取更加激进的优化,而不会意外引入崩溃或漏洞。

但 Rust 并不局限于底层系统编程。它表达力强、写起来舒适,让人能够轻松地编写出命令行应用、网络服务器等各种类型的代码——在本书中就有这两者的简单示例。使用 Rust 能让你把在一个领域中学习的技能延伸到另一个领域:你可以通过编写网页应用来学习 Rust,接着将同样的技能应用到你的 Raspberry Pi(树莓派)上。

本书全面介绍了 Rust 为用户赋予的能力。其内容平易近人,致力于帮助你提升 Rust 的知识,并且提升你作为程序员整体的理解与自信。欢迎你加入 Rust 社区,让我们准备深入学习 Rust 吧!

—— Nicholas Matsakis 和 Aaron Turon

简介

ch00-00-introduction.md
commit 4404cbcc354fad516c7ad9b5dea51b2ed876803a

注意:此书的英文原版与 No Starch Press 出版的纸质版和电子版《The Rust Programming Language》一致。

欢迎阅读《Rust 程序设计语言》,这是一本 Rust 语言的入门书。Rust 程序设计语言能帮助你编写更快、更可靠的软件。在编程语言设计中,上层的编程效率和底层的细粒度控制往往不能兼得,而 Rust 则试图挑战这一矛盾。Rust 通过平衡技术能力和开发体验,允许你控制内存使用等底层细节,同时也不需要担心底层控制带来的各种麻烦。

Rust 适合哪些人

Rust 适合很多开发者,其原因多种多样。下面讨论几个最重要的群体。

开发团队

实践证明,对于大规模的开发团队,即使成员的系统编程水平不同,Rust 仍是高效的协作工具。底层代码中容易出现多种不易察觉的 bug。在其他编程语言中想要找到它们,只能设计大量的测试,并且让经验丰富的开发者细心审核代码。在 Rust 中,编译器充当了守门员的角色。如果代码中存在这些难找的 bug,比如并发的 bug,它会拒绝编译。只要与编译器协同工作,团队就可以花更多的时间聚焦在程序逻辑上,无需费心找 bug。

Rust 也为系统编程世界带来了现代化的开发工具:

  • Cargo 是内置的依赖管理器和构建工具,它能轻松增加、编译和管理依赖,并使依赖在 Rust 生态系统中保持一致。
  • Rustfmt 格式化工具确保开发者遵循一致的代码风格。
  • Rust Language Server 为集成开发环境(IDE)提供了强大的代码补全和内联错误信息功能。

通过使用 Rust 生态系统中丰富的工具,开发者可以更高效地编写系统层面代码。

学生

Rust 适合学生群体,也适合有兴趣学习系统概念的人。很多人利用 Rust 学习了操作系统开发等内容。Rust 社区欢迎学生提问,也乐于解答问题。Rust 团队希望系统概念能让更多人了解,尤其是编程新手,为此编写了这本书以及其他内容。

公司

大大小小的公司都已在生产中使用 Rust 来完成各种任务,包括命令行工具、网络服务、DevOps 工具、嵌入式设备、音视频分析与转码、加密货币、生物信息学、搜索引擎、物联网(IOT)程序、机器学习等,甚至 Firefox 浏览器的主要部分也是用 Rust 编写的。

开源开发者

Rust 适合那些希望构建 Rust 编程语言、社区、开发工具和库的开发者。我们欢迎你为 Rust 语言贡献力量。

重视速度和稳定性的开发者

Rust 适合追求编程语言的速度与稳定性的开发者。对于速度来说,既是指 Rust 可以运行的多快,也是指编写 Rust 程序的速度。Rust 编译器会检查代码,确保增加功能、重构代码时的稳定性。与之相比,其他的一些语言没有检查功能,导致开发者往往不敢修改脆弱的祖传代码。Rust 力求将高级语言特性编译成底层代码,并且与手写的代码运行速度同样快,这一概念称为零开销抽象(zero-cost abstractions),可以让代码又安全又快速。

这里提到的只是较大的几个受益群体,Rust 语言也希望能支持更多其他用户。总之,Rust 最重要的目标是消除数十年来程序员习以为常的取舍,让安全和高效、速度和易读易用可以兼得。试试看 Rust,说不定它的选择就适合你。

本书适合哪些人

本书假设你已经有其他编程语言的经验,任何语言均可,我们尽可能让各种语言背景的人都能读懂。本书的重点不是程序设计本身,也不是程序设计思维。如果你完全没学过编程,建议你先阅读专门介绍程序设计的书籍。

如何阅读本书

本书大体上假设您按从头到尾的顺序阅读。后面的章节建立于前面章节的基础上。前面的章节可能不会深入介绍部分主题,而是留待后续章节重新讨论。

本书分为两类章节:概念章节和项目章节。在概念章节中,我们学习 Rust 的某个方面。在项目章节中,我们应用目前所学的知识一同构建小型程序。第 2、12、20 章是项目章节;其余都是概念章节。

第 1 章介绍如何安装 Rust,如何编写 “Hello, world!” 程序,以及如何使用 Rust 的包管理器和构建工具 Cargo。第 2 章是一个编写 Rust 语言的实战介绍,我们会构建一个猜猜看游戏。我们会站在较高的层次介绍一些概念,而将详细的介绍放在稍后的章节中。如果你希望立刻就动手实践一下,第 2 章正好适合你。第 3 章介绍 Rust 中类似其他编程语言的特性,你可以选择跳过,直接阅读第 4 章学习 Rust 的所有权(ownership)系统。不过,如果你注重细节,可以跳过第 2 章直接看第 3 章,之后想要写项目的时候再回来看第 2 章。

第 5 章讨论结构体(struct)和方法,第 6 章介绍枚举(enum)、match 表达式和 if let 控制流结构。在 Rust 中,创建自定义类型需要用到结构体和枚举。

第 7 章介绍 Rust 的模块(module)系统,其中的私有性规则用来组织代码和公开的 API(应用程序接口)。第 8 章讨论标准库提供的常见集合数据结构,例如 Vector(向量)、字符串和 Hash Map(散列表)。第 9 章探索 Rust 的错误处理技术和理念。

第 10 章深入介绍泛型(generic)、Trait 和生命周期(lifetime),用这些特性可以写出适用多种类型的代码。第 11 章介绍测试,因为就算 Rust 有安全保证,也需要测试确保程序逻辑正确。grep 命令可以查找文件中的文本,第 12 章中我们将会构建一个命令行工具实现它的部分功能,为此会用到之前章节讨论的很多概念。

第 13 章探索闭包(closure)和迭代器(iterator),这两个特性来自函数式编程语言。第 14 章会深入探讨 Cargo 并介绍分享代码库的最佳实践。第 15 章讨论标准库提供的智能指针以及相关的 Trait。

第 16 章介绍几类并发编程模型,并讨论 Rust 如何助你无畏地编写多线程程序。第 17 章着眼于比较 Rust 风格与 OOP(面向对象编程)原则。

第 18 章介绍模式和模式匹配,它是在 Rust 程序中表达思想的有效方式。第 19 章是一个高级主题大杂烩,包括不安全 Rust(unsafe Rust)、宏(macro)和更多关于生命周期、Trait、类型、函数和闭包的内容。

第 20 章我们将会完成一个项目,实现一个底层的、多线程的网络服务器!

最后的附录包含一些实用信息,格式类似参考文档。附录 A 介绍 Rust 的关键字,附录 B 介绍 Rust 的运算符和符号,附录 C 介绍标准库提供的可派生 Trait,附录 D 涉及一些有用的开发工具,附录 E 介绍 Rust 的不同版本。

本书没有错误的阅读方式,可以尽管跳过部分内容,遇到困惑时再回看前面的章节。

学习 Rust 的一个重点在于了解如何阅读编译器提供的错误信息,它们会指导你编写出能运行的代码。为此,我们会提供很多无法通过编译的示例,并附上错误信息。运行示例代码的时候务必阅读上下文,看看这段代码是否是故意写错的,部分示例代码就是无法编译的!Ferris 也会帮助你分辨哪些代码是故意写错的:

Ferris含义
Ferris 头上有问号这段代码无法通过编译!
Ferris 举起两只钳子这段代码会 Panic!
Ferris 举起一只钳子并耸肩这段代码的运行结果不符合预期。

在大部分情况,我们会指导你将无法通过编译的代码修改为正确版本。

源代码

生成本书的源码可以在 GitHub 上找到。

译者注:此译本也有 GitHub 仓库,欢迎提交 Issue 和 PR :)

入门指南

ch01-00-getting-started.md
commit 1fedfc4b96c2017f64ecfcf41a0a07e2e815f24f

让我们开始 Rust 之旅!有很多内容需要学习,但每次旅程总有起点。在本章中,我们会讨论:

  • 在 Linux、macOS 和 Windows 上安装 Rust
  • 编写一个打印 Hello, world! 的程序
  • 使用 Rust 的包管理器和构建系统 cargo

安装

ch01-01-installation.md
commit 2bd5d42c9956369132228da6409f0e68da56c51a

第一步是安装 Rust。我们会通过 rustup 下载 Rust,这是一个管理 Rust 版本和相关工具的命令行工具。下载时需要联网。

注意:如果你出于某些理由倾向于不使用 rustup,请到 Rust 的其他安装方法页面 查看其它安装选项。

接下来的步骤会安装最新的稳定版 Rust 编译器。Rust 的稳定性确保本书所有示例在最新版本的 Rust 中能够继续编译。不同版本的输出可能略有不同,因为 Rust 经常改进错误信息和警告。也就是说,任何通过这些步骤安装的最新稳定版 Rust,都应该能正常运行本书中的内容。

命令行标记

本章和全书中,我们会展示一些在终端中使用的命令。所有需要输入到终端的行都以 $ 开头。你不需要输入$字符;这里显示的$字符表示命令行提示符,仅用于提示每行命令的起点。不以 $ 起始的行通常展示前一个命令的输出。另外,PowerShell 专用的示例会采用 > 而不是 $

在 Linux 或 macOS 上安装 rustup

如果你使用 Linux 或 macOS,打开终端并输入如下命令:

$ curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | sh

此命令下载一个脚本并开始安装 rustup 工具,这会安装最新稳定版 Rust。过程中可能会提示你输入密码。如果安装成功,将会出现如下内容:

Rust is installed now. Great!

另外,你还需要一个 链接器(linker),这是 Rust 用来将其编译的输出连接到一个文件中的程序。很可能你已经有一个了。如果你遇到了链接器错误,请尝试安装一个 C 编译器,它通常包括一个链接器。C 编译器也很有用,因为一些常见的 Rust 包依赖于 C 代码,因此需要安装一个 C 编译器。

在 macOS 上,你可以通过运行以下命令获得 C 语言编译器:

$ xcode-select --install

Linux 用户通常需要根据发行版(distribution)文档安装 GCC 或 Clang。比如,如果你使用 Ubuntu,可以安装 build-essential 包。

在 Windows 上安装 rustup

在 Windows 上,前往 https://www.rust-lang.org/install.html 并按照说明安装 Rust。在安装过程的某个步骤,你会收到一个信息说明为什么需要安装 Visual Studio 2013 或其更新版本的 MSVC 构建工具。

要获取构建工具,你需要安装 Visual Studio 2022。当被问及需要安装什么工作负载(Workload)的时候,请确保勾选了以下内容:

  • “使用 C++ 的桌面开发”(“Desktop Development with C++”)
  • Windows 10(或 11)SDK
  • 英语语言包,以及其他你所需要的语言包

本书的余下部分会使用能同时运行于 cmd.exe 和 PowerShell 的命令。如果存在特定差异,我们会解释使用哪一个。

故障排除(Troubleshooting)

要检查是否正确安装了 Rust,打开命令行并输入:

$ rustc --version

你应该可以看到按照以下格式显示的最新稳定版本的版本号、对应的 Commit Hash 和 Commit 日期:

rustc x.y.z (abcabcabc yyyy-mm-dd)

如果看到了这样的信息,就说明 Rust 已经安装成功了!

译者:恭喜入坑!(此处应该有掌声!)

如果没看到,请按照下面说明的方法检查 Rust 是否在您的 %PATH% 系统变量中。

在 Windows CMD 中,请使用命令:

> echo %PATH%

在 PowerShell 中,请使用命令:

> echo $env:Path

在 Linux 和 macOS 中,请使用命令:

$ echo $PATH

如果一切正确但 Rust 仍不能使用,有许多地方可以求助。您可以在社区页面查看如何与其他 Rustaceans(Rust 用户的称号,有自嘲意味)联系。

更新与卸载

通过 rustup 安装了 Rust 之后,更新到最新版本就很简单了,只需要在您对应的命令行中运行如下更新脚本:

$ rustup update

若要卸载 Rust 和 rustup,请在命令行中运行如下卸载脚本:

$ rustup self uninstall

本地文档

安装程序也自带一份文档的本地拷贝,可以离线阅读。运行 rustup doc 在浏览器中查看本地文档。

任何时候,如果你拿不准标准库中的类型或函数的用途和用法,请查阅应用程序接口(application programming interface,API)文档!

Hello, World!

ch01-02-hello-world.md
commit f801008f555e4e94aae826cf45f3a8011a773098

既然安装好了 Rust,是时候来编写第一个 Rust 程序了。当学习一门新语言的时候,使用该语言在屏幕上打印 Hello, world! 是一项传统,我们将沿用这一传统!

注意:本书假设你熟悉基本的命令行操作。Rust 对于你的编辑器、工具,以及代码位于何处并没有特定的要求,如果你更倾向于使用集成开发环境(IDE),而不是命令行,请尽管使用你喜欢的 IDE。目前很多 IDE 都在一定程度上支持 Rust;查看 IDE 文档以了解更多细节。Rust 团队一直致力于借助 rust-analyzer 提供强大的 IDE 支持。详见附录 D

创建项目目录

首先创建一个存放 Rust 代码的目录。Rust 并不关心代码的存放位置,不过对于本书的练习和项目来说,我们建议你在 home 目录中创建 projects 目录,并将你的所有项目存放在这里。

打开终端并输入如下命令创建 projects 目录,并在 projects 目录中为 “Hello, world!” 项目创建一个目录。

对于 Linux、macOS 和 Windows PowerShell,输入:

$ mkdir ~/projects
$ cd ~/projects
$ mkdir hello_world
$ cd hello_world

对于 Windows CMD,输入:

> mkdir "%USERPROFILE%\projects"
> cd /d "%USERPROFILE%\projects"
> mkdir hello_world
> cd hello_world

编写并运行 Rust 程序

接下来,新建一个源文件,命名为 main.rs。Rust 源文件总是以 .rs 扩展名结尾。如果文件名包含多个单词,那么按照命名习惯,应当使用下划线来分隔单词。例如命名为 hello_world.rs,而不是 helloworld.rs

现在打开刚创建的 main.rs 文件,输入示例 1-1 中的代码。

文件名:main.rs

fn main() {
    println!("Hello, world!");
}

示例 1-1: 一个打印 Hello, world! 的程序

保存文件,并回到当前目录为“~/projects/hello_world”的终端窗口。在 Linux 或 macOS 上,输入如下命令,编译并运行文件:

$ rustc main.rs
$ ./main
Hello, world!

在 Windows 上,输入命令 .\main.exe,而不是 ./main

> rustc main.rs
> .\main.exe
Hello, world!

不管使用何种操作系统,终端应该打印字符串 Hello, world!。如果没有看到这些输出,回到安装部分的 “故障排除” 小节查找有帮助的方法。

如果 Hello, world! 出现了,恭喜你!你已经正式编写了一个 Rust 程序。现在你成为一名 Rust 程序员,欢迎!

分析这个 Rust 程序

现在,让我们回过头来仔细看看这个 “Hello, world!” 程序。这是第一块拼图:

fn main() {

}

这几行定义了一个名叫 main 的函数。main 函数是一个特殊的函数:在可执行的 Rust 程序中,它总是最先运行的代码。第一行代码声明了一个叫做 main 的函数,它没有参数也没有返回值。如果有参数的话,它们的名称应该出现在小括号 () 中。

函数体被包裹在 {} 中。Rust 要求所有函数体都要用花括号包裹起来。一般来说,将左花括号与函数声明置于同一行并以空格分隔,是良好的代码风格。

注:如果你希望在 Rust 项目中保持一种标准风格,可以使用名为 rustfmt 的自动格式化工具将代码格式化为特定的风格(更多内容详见附录 D 中的 rustfmt)。Rust 团队已经在标准的 Rust 发行版中包含了这个工具,就像 rustc 一样。所以它应该已经安装在你的电脑中了!

main 函数中有如下代码:

#![allow(unused)]
fn main() {
    println!("Hello, world!");
}

这行代码完成这个简单程序的所有工作:在屏幕上打印文本。这里有四个重要的细节需要注意。首先 Rust 的缩进风格使用 4 个空格,而不是 1 个制表符(tab)。

第二,println! 调用了一个 Rust 宏(macro)。如果是调用函数,则应输入 println(没有!)。我们将在第十九章详细讨论宏。现在你只需记住,当看到符号 ! 的时候,就意味着调用的是宏而不是普通函数,并且宏并不总是遵循与函数相同的规则。

第三,"Hello, world!" 是一个字符串。我们把这个字符串作为一个参数传递给 println!,字符串将被打印到屏幕上。

第四,该行以分号结尾(;),这代表一个表达式的结束和下一个表达式的开始。大部分 Rust 代码行以分号结尾。

编译和运行是彼此独立的步骤

你刚刚运行了一个新创建的程序,那么让我们检查此过程中的每一个步骤。

在运行 Rust 程序之前,必须先使用 Rust 编译器编译它,即输入 rustc 命令并传入源文件名称,如下:

$ rustc main.rs

如果你有 C 或 C++ 背景,就会发现这与 gccclang 类似。编译成功后,Rust 会输出一个二进制的可执行文件。

在 Linux、macOS 或 Windows 的 PowerShell 上,在 shell 中输入 ls 命令可以看见这个可执行文件。

$ ls
main  main.rs

在 Linux 和 macOS,你会看到两个文件。在 Windows PowerShell 中,你会看到同使用 CMD 相同的三个文件。在 Windows 的 CMD 上,则输入如下内容:

> dir /B %= the /B option says to only show the file names =%
main.exe
main.pdb
main.rs

这展示了扩展名为 .rs 的源文件、可执行文件(在 Windows 下是 main.exe,其它平台是 main),以及当使用 CMD 时会有一个包含调试信息、扩展名为 .pdb 的文件。从这里开始运行 mainmain.exe 文件,如下:

$ ./main # Windows 是 .\main.exe

如果这里的 main.rs 是上文所述的 “Hello, world!” 程序,那么在终端上就会打印出 Hello, world!

如果你更熟悉动态语言,如 Ruby、Python 或 JavaScript,则可能不习惯将编译和运行分为两个单独的步骤。Rust 是一种 预编译静态类型ahead-of-time compiled)语言,这意味着你可以编译程序,并将可执行文件送给其他人,他们甚至不需要安装 Rust 就可以运行。如果你给他人一个 .rb.py.js 文件,他们需要先分别安装 Ruby,Python,JavaScript 实现(运行时环境,VM)。不过在这些语言中,只需要一句命令就可以编译和运行程序。这一切都是语言设计上的权衡取舍。

仅仅使用 rustc 编译简单程序是没问题的,不过随着项目的增长,你可能需要管理你项目的方方面面,并让代码易于分享。接下来,我们要介绍一个叫做 Cargo 的工具,它会帮助你编写真实世界中的 Rust 程序。

Hello, Cargo!

ch01-03-hello-cargo.md
commit f801008f555e4e94aae826cf45f3a8011a773098

Cargo 是 Rust 的构建系统和包管理器。大多数 Rustacean 们使用 Cargo 来管理他们的 Rust 项目,因为它可以为你处理很多任务,比如构建代码、下载依赖库并编译这些库。(我们把代码所需要的库叫做 依赖dependencies))。

最简单的 Rust 程序,比如我们刚刚编写的,没有任何依赖。如果使用 Cargo 来构建 “Hello, world!” 项目,将只会用到 Cargo 构建代码的那部分功能。在编写更复杂的 Rust 程序时,你将添加依赖项,如果使用 Cargo 启动项目,则添加依赖项将更容易。

由于绝大多数 Rust 项目使用 Cargo,本书接下来的部分假设你也使用 Cargo。如果使用 “安装” 部分介绍的官方安装包的话,则自带了 Cargo。如果通过其他方式安装的话,可以在终端输入如下命令检查是否安装了 Cargo:

$ cargo --version

如果你看到了版本号,说明已安装!如果看到类似 command not found 的错误,你应该查看相应安装文档以确定如何单独安装 Cargo。

使用 Cargo 创建项目

我们使用 Cargo 创建一个新项目,然后看看与上面的 “Hello, world!” 项目有什么不同。回到 projects 目录(或者你存放代码的目录)。接着,可在任何操作系统下运行以下命令:

$ cargo new hello_cargo
$ cd hello_cargo

第一行命令新建了名为 hello_cargo 的目录和项目。我们将项目命名为 hello_cargo,同时 Cargo 在一个同名目录中创建项目文件。

进入 hello_cargo 目录并列出文件。将会看到 Cargo 生成了两个文件和一个目录:一个 Cargo.toml 文件,一个 src 目录,以及位于 src 目录中的 main.rs 文件。

这也会在 hello_cargo 目录初始化了一个 git 仓库,以及一个 .gitignore 文件。如果在一个已经存在的 git 仓库中运行 cargo new,则这些 git 相关文件则不会生成;可以通过运行 cargo new --vcs=git 来覆盖这些行为。

注意:Git 是一个常用的版本控制系统(version control system,VCS)。可以通过 --vcs 参数使 cargo new 切换到其它版本控制系统(VCS),或者不使用 VCS。运行 cargo new --help 参看可用的选项。

请自行选用文本编辑器打开 Cargo.toml 文件。它应该看起来如示例 1-2 所示:

文件名:Cargo.toml

[package]
name = "hello_cargo"
version = "0.1.0"
edition = "2021"

# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

示例 1-2: cargo new 命令生成的 Cargo.toml 的内容

这个文件使用 TOML (Tom's Obvious, Minimal Language) 格式,这是 Cargo 配置文件的格式。

第一行,[package],是一个片段(section)标题,表明下面的语句用来配置一个包。随着我们在这个文件增加更多的信息,还将增加其他片段(section)。

接下来的三行设置了 Cargo 编译程序所需的配置:项目的名称、项目的版本以及要使用的 Rust 版本。附录 E 会介绍 edition 的值。

最后一行,[dependencies],是罗列项目依赖的片段的开始。在 Rust 中,代码包被称为 crates。这个项目并不需要其他的 crate,不过在第二章的第一个项目会用到依赖,那时会用得上这个片段。

现在打开 src/main.rs 看看:

文件名:src/main.rs

fn main() {
    println!("Hello, world!");
}

Cargo 为你生成了一个 “Hello, world!” 程序,正如我们之前编写的示例 1-1!目前为止,我们的项目与 Cargo 生成项目的区别是 Cargo 将代码放在 src 目录,同时项目根目录包含一个 Cargo.toml 配置文件。

Cargo 期望源文件存放在 src 目录中。项目根目录只存放 README、license 信息、配置文件和其他跟代码无关的文件。使用 Cargo 帮助你保持项目干净整洁,一切井井有条。

如果没有使用 Cargo 开始项目,比如我们创建的 Hello,world! 项目,可以将其转化为一个 Cargo 项目。将代码放入 src 目录,并创建一个合适的 Cargo.toml 文件。

构建并运行 Cargo 项目

现在让我们看看通过 Cargo 构建和运行 “Hello, world!” 程序有什么不同!在 hello_cargo 目录下,输入下面的命令来构建项目:

$ cargo build
   Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
    Finished dev [unoptimized + debuginfo] target(s) in 2.85 secs

这个命令会创建一个可执行文件 target/debug/hello_cargo (在 Windows 上是 target\debug\hello_cargo.exe),而不是放在目前目录下。由于默认的构建方法是调试构建(debug build),Cargo 会将可执行文件放在名为 debug 的目录中。可以通过这个命令运行可执行文件:

$ ./target/debug/hello_cargo # 或者在 Windows 下为 .\target\debug\hello_cargo.exe
Hello, world!

如果一切顺利,终端上应该会打印出 Hello, world!。首次运行 cargo build 时,也会使 Cargo 在项目根目录创建一个新文件:Cargo.lock。这个文件记录项目依赖的实际版本。这个项目并没有依赖,所以其内容比较少。你自己永远也不需要碰这个文件,让 Cargo 处理它就行了。

我们刚刚使用 cargo build 构建了项目,并使用 ./target/debug/hello_cargo 运行了程序,也可以使用 cargo run 在一个命令中同时编译并运行生成的可执行文件:

$ cargo run
    Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
     Running `target/debug/hello_cargo`
Hello, world!

比起要记得运行 cargo build 之后再用可执行文件的完整路径来运行程序,使用 cargo run 可以实现完全相同的效果,而且要方便得多,所以大多数开发者会使用 cargo run

注意这一次并没有出现表明 Cargo 正在编译 hello_cargo 的输出。Cargo 发现文件并没有被改变,所以它并没有重新编译,而是直接运行了可执行文件。如果修改了源文件的话,Cargo 会在运行之前重新构建项目,并会出现像这样的输出:

$ cargo run
   Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
    Finished dev [unoptimized + debuginfo] target(s) in 0.33 secs
     Running `target/debug/hello_cargo`
Hello, world!

Cargo 还提供了一个叫 cargo check 的命令。该命令快速检查代码确保其可以编译,但并不产生可执行文件:

$ cargo check
   Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)
    Finished dev [unoptimized + debuginfo] target(s) in 0.32 secs

为什么你会不需要可执行文件呢?通常 cargo check 要比 cargo build 快得多,因为它省略了生成可执行文件的步骤。如果你在编写代码时持续的进行检查,cargo check 可以让你快速了解现在的代码能不能正常通过编译!为此很多 Rustaceans 编写代码时定期运行 cargo check 确保它们可以编译。当准备好使用可执行文件时才运行 cargo build

我们回顾下已学习的 Cargo 内容:

  • 可以使用 cargo new 创建项目。
  • 可以使用 cargo build 构建项目。
  • 可以使用 cargo run 一步构建并运行项目。
  • 可以使用 cargo check 在不生成二进制文件的情况下构建项目来检查错误。
  • 有别于将构建结果放在与源码相同的目录,Cargo 会将其放到 target/debug 目录。

使用 Cargo 的一个额外的优点是,不管你使用什么操作系统,其命令都是一样的。所以从现在开始本书将不再为 Linux 和 macOS 以及 Windows 提供相应的命令。

发布(release)构建

当项目最终准备好发布时,可以使用 cargo build --release 来优化编译项目。这会在 target/release 而不是 target/debug 下生成可执行文件。这些优化可以让 Rust 代码运行的更快,不过启用这些优化也需要消耗更长的编译时间。这也就是为什么会有两种不同的配置:一种是为了开发,你需要经常快速重新构建;另一种是为用户构建最终程序,它们不会经常重新构建,并且希望程序运行得越快越好。如果你在测试代码的运行时间,请确保运行 cargo build --release 并使用 target/release 下的可执行文件进行测试。

把 Cargo 当作习惯

对于简单项目,Cargo 并不比 rustc 提供了更多的优势,不过随着开发的深入,终将证明其价值。一旦程序壮大到由多个文件组成,亦或者是需要其他的依赖,让 Cargo 协调构建过程就会简单得多。

即便 hello_cargo 项目十分简单,它现在也使用了很多在你之后的 Rust 生涯将会用到的实用工具。其实,要在任何已存在的项目上工作时,可以使用如下命令通过 Git 检出代码,移动到该项目目录并构建:

$ git clone example.org/someproject
$ cd someproject
$ cargo build

关于更多 Cargo 的信息,请查阅 其文档

总结

你已经准备好开启 Rust 之旅了!在本章中,你学习了如何:

  • 使用 rustup 安装最新稳定版的 Rust
  • 更新到新版的 Rust
  • 打开本地安装的文档
  • 直接通过 rustc 编写并运行 Hello, world! 程序
  • 使用 Cargo 创建并运行新项目

是时候通过构建更实质性的程序来熟悉读写 Rust 代码了。所以在第二章我们会构建一个猜猜看游戏程序。如果你更愿意从学习 Rust 常用的编程概念开始,请阅读第三章,接着再回到第二章。

写个猜数字游戏

ch02-00-guessing-game-tutorial.md
commit f28554d1b216d49a4d11d05995302cf54a0f9d72

让我们一起动手完成一个项目,来快速上手 Rust!本章将介绍 Rust 中一些常用概念,并通过真实的程序来展示如何运用它们。你将会学到 letmatch、方法(method)、关联函数(associated function)、外部 crate 等知识!后续章节会深入探讨这些概念的细节。在这一章,我们将练习基础内容。

我们会实现一个经典的新手编程问题:猜猜看游戏。它是这么工作的:程序将会随机生成一个 1 到 100 之间的随机整数。接着它会请玩家猜一个数并输入,然后提示猜测是大了还是小了。如果猜对了,它会打印祝贺信息并退出。

准备一个新项目

要创建一个新项目,进入第一章中创建的 projects 目录,使用 Cargo 新建一个项目,如下:

$ cargo new guessing_game
$ cd guessing_game

第一个命令,cargo new,它获取项目的名称(guessing_game)作为第一个参数。第二个命令进入到新创建的项目目录。

看看生成的 Cargo.toml 文件:

文件名:Cargo.toml

[package]
name = "guessing_game"
version = "0.1.0"
edition = "2021"

# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

正如第一章那样,cargo new 生成了一个 “Hello, world!” 程序。查看 src/main.rs 文件:

文件名:src/main.rs

fn main() {
    println!("Hello, world!");
}

现在使用 cargo run 命令,一步完成 “Hello, world!” 程序的编译和运行:

$ cargo run
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished dev [unoptimized + debuginfo] target(s) in 1.50s
     Running `target/debug/guessing_game`
Hello, world!

当你需要在项目中快速迭代时,run 命令就能派上用场,正如我们在这个游戏项目中做的,在下一次迭代之前快速测试每一次迭代。

重新打开 src/main.rs 文件。我们将会在这个文件中编写全部的代码。

处理一次猜测

猜猜看程序的第一部分请求和处理用户输入,并检查输入是否符合预期的格式。首先,允许玩家输入猜测。在 src/main.rs 中输入示例 2-1 中的代码。

文件名:src/main.rs

use std::io;

fn main() {
    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

示例 2-1:获取用户猜测并打印的代码

这些代码包含很多信息,我们一行一行地过一遍。为了获取用户输入并打印结果作为输出,我们需要将 io输入/输出库引入当前作用域。io 库来自于标准库,也被称为 std

use std::io;

fn main() {
    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

默认情况下,Rust 设定了若干个会自动导入到每个程序作用域中的标准库内容,这组内容被称为 预导入(preclude) 内容。你可以在标准库文档中查看预导入的所有内容。

如果你需要的类型不在预导入内容中,就必须使用 use 语句显式地将其引入作用域。std::io 库提供很多有用的功能,包括接收用户输入的功能。

如第一章所提及,main 函数是程序的入口点:

use std::io;

fn main() {
    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

fn 语法声明了一个新函数,小括号 () 表明没有参数,大括号 { 作为函数体的开始。

第一章也提及了 println! 是一个在屏幕上打印字符串的宏:

use std::io;

fn main() {
    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

这些代码仅仅打印提示,介绍游戏的内容然后请求用户输入。

使用变量储存值

接下来,创建一个 变量variable)来储存用户输入,像这样:

use std::io;

fn main() {
    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

现在程序开始变得有意思了!这一小行代码发生了很多事。我们使用 let 语句来创建变量。这里是另外一个例子:

let apples = 5;

这行代码新建了一个叫做 apples 的变量并把它绑定到值 5 上。在 Rust 中,变量默认是不可变的,这意味着一旦我们给变量赋值,这个值就不再可以修改了。我们将会在第三章的 “变量与可变性” 部分详细讨论这个概念。下面的例子展示了如何在变量名前使用 mut 来使一个变量可变:

let apples = 5; // 不可变
let mut bananas = 5; // 可变

注意:// 语法开始一个注释,持续到行尾。Rust 忽略注释中的所有内容,第三章将会详细介绍注释。

回到猜猜看程序中。现在我们知道了 let mut guess 会引入一个叫做 guess 的可变变量。等号(=)告诉 Rust 我们现在想将某个值绑定在变量上。等号的右边是 guess 所绑定的值,它是 String::new 的结果,这个函数会返回一个 String 的新实例。String 是一个标准库提供的字符串类型,它是 UTF-8 编码的可增长文本块。

::new 那一行的 :: 语法表明 newString 类型的一个 关联函数associated function)。关联函数是针对类型实现的,在这个例子中是 String,而不是 String 的某个特定实例。一些语言中把它称为 静态方法static method)。

new 函数创建了一个新的空字符串,你会发现很多类型上有 new 函数,因为它是创建类型实例的惯用函数名。

总的来说,let mut guess = String::new(); 这一行创建了一个可变变量,当前它绑定到一个新的 String 空实例上。

接收用户输入

回忆一下,我们在程序的第一行使用 use std::io; 从标准库中引入了输入/输出功能。现在调用 io 库中的函数 stdin

use std::io;

fn main() {
    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

如果程序的开头没有使用 use std::io; 引入 io 库,我们仍可以通过把函数调用写成 std::io::stdin 来使用函数。stdin 函数返回一个 std::io::Stdin 的实例,这代表终端标准输入句柄的类型。

代码的下一部分,.read_line(&mut guess),调用 read_line 方法从标准输入句柄获取用户输入。我们还将 &mut guess 作为参数传递给 read_line() 函数,让其将用户输入储存到这个字符串中。read_line 的工作是,无论用户在标准输入中键入什么内容,都将其追加(不会覆盖其原有内容)到一个字符串中,因此它需要字符串作为参数。这个字符串参数应该是可变的,以便 read_line 将用户输入附加上去。

& 表示这个参数是一个 引用reference),它允许多处代码访问同一处数据,而无需在内存中多次拷贝。引用是一个复杂的特性,Rust 的一个主要优势就是安全而简单的操纵引用。完成当前程序并不需要了解如此多细节。现在,我们只需知道它像变量一样,默认是不可变的。因此,需要写成 &mut guess 来使其可变,而不是 &guess。(第四章会更全面的解释引用。)

使用 Result 类型来处理潜在的错误

我们还没有完全分析完这行代码。虽然我们已经讲到了第三行代码,但要注意:它仍是逻辑行(虽然换行了但仍是语句)的一部分。后一部分是这个方法(method):

use std::io;

fn main() {
    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

我们也可以将代码这样写:

io::stdin().read_line(&mut guess).expect("Failed to read line");

不过,过长的代码行难以阅读,所以最好拆开来写。通常来说,当使用 .method_name() 语法调用方法时引入换行符和空格将长的代码行拆开是明智的。现在来看看这行代码干了什么。

之前提到了 read_line 会将用户输入附加到传递给它的字符串中,不过它也会返回一个类型为 Result 的值。 Result 是一种枚举类型,通常也写作 enum。枚举类型变量的值可以是多种可能状态中的一个。我们把每种可能的状态称为一种 枚举成员(variant)

第六章将介绍枚举的更多细节。这里的 Result 类型将用来编码错误处理的信息。

Result 的成员是 OkErrOk 成员表示操作成功,内部包含成功时产生的值。Err 成员则意味着操作失败,并且包含失败的前因后果。

这些 Result 类型的作用是编码错误处理信息。Result 类型的值,像其他类型一样,拥有定义于其上的方法。Result 的实例拥有 expect 方法。如果 io::Result 实例的值是 Errexpect 会导致程序崩溃,并显示当做参数传递给 expect 的信息。如果 read_line 方法返回 Err,则可能是来源于底层操作系统错误的结果。如果 Result 实例的值是 Okexpect 会获取 Ok 中的值并原样返回。在本例中,这个值是用户输入到标准输入中的字节数。

如果不调用 expect,程序也能编译,不过会出现一个警告:

$ cargo build
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
warning: unused `Result` that must be used
  --> src/main.rs:10:5
   |
10 |     io::stdin().read_line(&mut guess);
   |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   |
   = note: `#[warn(unused_must_use)]` on by default
   = note: this `Result` may be an `Err` variant, which should be handled

warning: `guessing_game` (bin "guessing_game") generated 1 warning
    Finished dev [unoptimized + debuginfo] target(s) in 0.59s

Rust 警告我们没有使用 read_line 的返回值 Result,说明有一个可能的错误没有处理。

消除警告的正确做法是实际去编写错误处理代码,不过由于我们就是希望程序在出现问题时立即崩溃,所以直接使用 expect第九章 会学习如何从错误中恢复。

使用 println! 占位符打印值

除了位于结尾的右花括号,目前为止就只有这一行代码值得讨论一下了,就是这一行:

use std::io;

fn main() {
    println!("Guess the number!");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

这行代码现在打印了存储用户输入的字符串。里面的 {} 是预留在特定位置的占位符:把 {} 想象成小蟹钳,可以夹住合适的值。当打印变量的值时,变量名可以写进大括号中。当打印表达式的执行结果时,格式化字符串(format string)中大括号中留空,格式化字符串后跟逗号分隔的需要打印的表达式列表,其顺序与每一个空大括号占位符的顺序一致。在一个 println! 调用中打印变量和表达式的值看起来像这样:

#![allow(unused)]
fn main() {
let x = 5;
let y = 10;

println!("x = {x} and y + 2 = {}", y + 2);
}

这行代码会打印出 x = 5 and y + 2 = 12

测试第一部分代码

让我们来测试下猜猜看游戏的第一部分。使用 cargo run 运行:

$ cargo run
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished dev [unoptimized + debuginfo] target(s) in 6.44s
     Running `target/debug/guessing_game`
Guess the number!
Please input your guess.
6
You guessed: 6

至此为止,游戏的第一部分已经完成:我们从键盘获取输入并打印了出来。

生成一个秘密数字

接下来,需要生成一个秘密数字,好让用户来猜。秘密数字应该每次都不同,这样重复玩才不会乏味;范围应该在 1 到 100 之间,这样才不会太困难。Rust 标准库中尚未包含随机数功能。然而,Rust 团队还是提供了一个包含上述功能的 rand crate

使用 crate 来增加更多功能

记住,crate 是一个 Rust 代码包。我们正在构建的项目是一个 二进制 crate,它生成一个可执行文件。 rand crate 是一个 库 crate,库 crate 可以包含任意能被其他程序使用的代码,但是不能自执行。

Cargo 对外部 crate 的运用是其真正的亮点所在。在我们使用 rand 编写代码之前,需要修改 Cargo.toml 文件,引入一个 rand 依赖。现在打开这个文件并将下面这一行添加到 [dependencies] 片段标题之下。在当前版本下,请确保按照我们这里的方式指定 rand,否则本教程中的示例代码可能无法工作。

文件名:Cargo.toml

[dependencies]
rand = "0.8.5"

Cargo.toml 文件中,标题以及之后的内容属同一个片段,直到遇到下一个标题才开始新的片段。[dependencies] 片段告诉 Cargo 本项目依赖了哪些外部 crate 及其版本。本例中,我们使用语义化版本 0.8.5 来指定 rand crate。Cargo 理解 语义化版本(Semantic Versioning)(有时也称为 SemVer),这是一种定义版本号的标准。0.8.5 事实上是 ^0.8.5 的简写,它表示任何至少是 0.8.5 但小于 0.9.0 的版本。

Cargo 认为这些版本与 0.8.5 版本的公有 API 相兼容,这样的版本指定确保了我们可以获取能使本章代码编译的最新的补丁(patch)版本。任何大于等于 0.9.0 的版本不能保证和接下来的示例采用了相同的 API。

现在,不修改任何代码,构建项目,如示例 2-2 所示:

$ cargo build
    Updating crates.io index
  Downloaded rand v0.8.5
  Downloaded libc v0.2.127
  Downloaded getrandom v0.2.7
  Downloaded cfg-if v1.0.0
  Downloaded ppv-lite86 v0.2.16
  Downloaded rand_chacha v0.3.1
  Downloaded rand_core v0.6.3
   Compiling libc v0.2.127
   Compiling getrandom v0.2.7
   Compiling cfg-if v1.0.0
   Compiling ppv-lite86 v0.2.16
   Compiling rand_core v0.6.3
   Compiling rand_chacha v0.3.1
   Compiling rand v0.8.5
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished dev [unoptimized + debuginfo] target(s) in 2.53s

示例 2-2: 将 rand crate 添加为依赖之后运行 cargo build 的输出

可能会出现不同的版本号(多亏了语义化版本,它们与代码是兼容的!),同时显示顺序也可能会有所不同。

现在我们有了一个外部依赖,Cargo 从 registry 上获取所有包的最新版本信息,这是一份来自 Crates.io 的数据拷贝。Crates.io 是 Rust 生态环境中的开发者们向他人贡献 Rust 开源项目的地方。

在更新完 registry 后,Cargo 检查 [dependencies] 片段并下载列表中包含但还未下载的 crates。本例中,虽然只声明了 rand 一个依赖,然而 Cargo 还是额外获取了 rand 所需要的其他 crates,因为 rand 依赖它们来正常工作。下载完成后,Rust 编译依赖,然后使用这些依赖编译项目。

如果不做任何修改,立刻再次运行 cargo build,则不会看到任何除了 Finished 行之外的输出。Cargo 知道它已经下载并编译了依赖,同时 Cargo.toml 文件也没有变动。Cargo 还知道代码也没有任何修改,所以它不会重新编译代码。因为无事可做,它简单的退出了。

如果打开 src/main.rs 文件,做一些无关紧要的修改,保存并再次构建,则会出现两行输出:

$ cargo build
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished dev [unoptimized + debuginfo] target(s) in 2.53 secs

这一行表示 Cargo 只针对 src/main.rs 文件的微小修改而更新构建。依赖没有变化,所以 Cargo 知道它可以复用已经为此下载并编译的代码。它只是重新构建了部分(项目)代码。

Cargo.lock 文件确保构建是可重现的

Cargo 有一个机制来确保任何人在任何时候重新构建代码,都会产生相同的结果:Cargo 只会使用你指定的依赖版本,除非你又手动指定了别的。例如,如果下周 rand crate 的 0.8.6 版本出来了,它修复了一个重要的 bug,同时也含有一个会破坏代码运行的缺陷。为了处理这个问题,Rust 在你第一次运行 cargo build 时建立了 Cargo.lock 文件,我们现在可以在guessing_game 目录找到它。

当第一次构建项目时,Cargo 计算出所有符合要求的依赖版本并写入 Cargo.lock 文件。当将来构建项目时,Cargo 会发现 Cargo.lock 已存在并使用其中指定的版本,而不是再次计算所有的版本。这使得你拥有了一个自动化的可重现的构建。换句话说,项目会持续使用 0.8.5 直到你显式升级,多亏有了 Cargo.lock 文件。由于 Cargo.lock 文件对于“可重复构建”非常重要,因此它通常会和项目中的其余代码一样纳入到版本控制系统中。

更新 crate 到一个新版本

当你 确实 需要升级 crate 时,Cargo 提供了这样一个命令,update,它会忽略 Cargo.lock 文件,并计算出所有符合 Cargo.toml 声明的最新版本。Cargo 接下来会把这些版本写入 Cargo.lock 文件。不过,Cargo 默认只会寻找大于 0.8.5 而小于 0.9.0 的版本。如果 rand crate 发布了两个新版本,0.8.60.9.0,在运行 cargo update 时会出现如下内容:

$ cargo update
    Updating crates.io index
    Updating rand v0.8.5 -> v0.8.6

Cargo 忽略了 0.9.0 版本。这时,你也会注意到的 Cargo.lock 文件中的变化无外乎现在使用的 rand crate 版本是0.8.6 。如果想要使用 0.9.0 版本的 rand 或是任何 0.9.x 系列的版本,必须像这样更新 Cargo.toml 文件:

[dependencies]

rand = "0.9.0"

下一次运行 cargo build 时,Cargo 会从 registry 更新可用的 crate,并根据你指定的新版本重新计算。

第十四章会讲到 Cargo 及其生态系统 的更多内容,不过目前你只需要了解这么多。通过 Cargo 复用库文件非常容易,因此 Rustacean 能够编写出由很多包组装而成的更轻巧的项目。

生成一个随机数

让我们开始使用 rand 来生成一个猜猜看随机数。下一步是更新 src/main.rs,如示例 2-3 所示。

文件名:src/main.rs

use std::io;
use rand::Rng;

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

示例 2-3:添加生成随机数的代码

首先,我们新增了一行 use rand::Rng;Rng 是一个 trait,它定义了随机数生成器应实现的方法,想使用这些方法的话,此 trait 必须在作用域中。第十章会详细介绍 trait。

接下来,我们在中间还新增加了两行。第一行调用了 rand::thread_rng 函数提供实际使用的随机数生成器:它位于当前执行线程的本地环境中,并从操作系统获取 seed。接着调用随机数生成器的 gen_range 方法。这个方法由 use rand::Rng 语句引入到作用域的 Rng trait 定义。gen_range 方法获取一个范围表达式(range expression)作为参数,并生成一个在此范围之间的随机数。这里使用的这类范围表达式使用了 start..=end 这样的形式,也就是说包含了上下端点,所以需要指定 1..=100 来请求一个 1 和 100 之间的数。

注意:你不可能凭空就知道应该 use 哪个 trait 以及该从 crate 中调用哪个方法,因此每个 crate 有使用说明文档。Cargo 有一个很棒的功能是:运行 cargo doc --open 命令来构建所有本地依赖提供的文档,并在浏览器中打开。例如,假设你对 rand crate 中的其他功能感兴趣,你可以运行 cargo doc --open 并点击左侧导航栏中的 rand

新增加的第二行代码打印出了秘密数字。这在开发程序时很有用,因为可以测试它,不过在最终版本中会删掉它。如果游戏一开始就打印出结果就没什么可玩的了!

尝试运行程序几次:

$ cargo run
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished dev [unoptimized + debuginfo] target(s) in 2.53s
     Running `target/debug/guessing_game`
Guess the number!
The secret number is: 7
Please input your guess.
4
You guessed: 4

$ cargo run
    Finished dev [unoptimized + debuginfo] target(s) in 0.02s
     Running `target/debug/guessing_game`
Guess the number!
The secret number is: 83
Please input your guess.
5
You guessed: 5

你应该能得到不同的随机数,同时它们应该都是在 1 和 100 之间的。干得漂亮!

比较猜测的数字和秘密数字

现在有了用户输入和一个随机数,我们可以比较它们。这个步骤如示例 2-4 所示。注意这段代码还不能通过编译,我们稍后会解释。

文件名:src/main.rs

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
    // --snip--
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");

    match guess.cmp(&secret_number) {
        Ordering::Less => println!("Too small!"),
        Ordering::Greater => println!("Too big!"),
        Ordering::Equal => println!("You win!"),
    }
}

示例 2-4:处理比较两个数字可能的返回值

首先我们增加了另一个 use 声明,从标准库引入了一个叫做 std::cmp::Ordering 的类型到作用域中。 Ordering 也是一个枚举,不过它的成员是 LessGreaterEqual。这是比较两个值时可能出现的三种结果。

接着,底部的五行新代码使用了 Ordering 类型,cmp 方法用来比较两个值并可以在任何可比较的值上调用。它获取一个被比较值的引用:这里是把 guesssecret_number 做比较。然后它会返回一个刚才通过 use 引入作用域的 Ordering 枚举的成员。使用一个 match 表达式,根据对 guesssecret_number 调用 cmp 返回的 Ordering 成员来决定接下来做什么。

一个 match 表达式由 分支(arms) 构成。一个分支包含一个 模式pattern)和表达式开头的值与分支模式相匹配时应该执行的代码。Rust 获取提供给 match 的值并挨个检查每个分支的模式。match 结构和模式是 Rust 中强大的功能,它体现了代码可能遇到的多种情形,并帮助你确保没有遗漏处理。这些功能将分别在第六章和第十八章详细介绍。

让我们看看使用 match 表达式的例子。假设用户猜了 50,这时随机生成的秘密数字是 38。

比较 50 与 38 时,因为 50 比 38 要大,cmp 方法会返回 Ordering::GreaterOrdering::Greatermatch 表达式得到的值。它检查第一个分支的模式,Ordering::LessOrdering::Greater并不匹配,所以它忽略了这个分支的代码并来到下一个分支。下一个分支的模式是 Ordering::Greater正确 匹配!这个分支关联的代码被执行,在屏幕打印出 Too big!match 表达式会在第一次成功匹配后终止,因为该场景下没有检查最后一个分支的必要。

然而,示例 2-4 的代码并不能编译,可以尝试一下:

$ cargo build
   Compiling libc v0.2.86
   Compiling getrandom v0.2.2
   Compiling cfg-if v1.0.0
   Compiling ppv-lite86 v0.2.10
   Compiling rand_core v0.6.2
   Compiling rand_chacha v0.3.0
   Compiling rand v0.8.5
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
error[E0308]: mismatched types
  --> src/main.rs:22:21
   |
22 |     match guess.cmp(&secret_number) {
   |                 --- ^^^^^^^^^^^^^^ expected struct `String`, found integer
   |                 |
   |                 arguments to this function are incorrect
   |
   = note: expected reference `&String`
              found reference `&{integer}`
note: associated function defined here

For more information about this error, try `rustc --explain E0308`.
error: could not compile `guessing_game` due to previous error

错误的核心表明这里有 不匹配的类型mismatched types)。Rust 有一个静态强类型系统,同时也有类型推断。当我们写出 let guess = String::new() 时,Rust 推断出 guess 应该是 String 类型,并不需要我们写出类型。另一方面,secret_number,是数字类型。几个数字类型拥有 1 到 100 之间的值:32 位数字 i32;32 位无符号数字 u32;64 位数字 i64 等等。Rust 默认使用 i32,所以它是 secret_number 的类型,除非增加类型信息,或任何能让 Rust 推断出不同数值类型的信息。这里错误的原因在于 Rust 不会比较字符串类型和数字类型。

所以我们必须把从输入中读取到的 String 转换为一个真正的数字类型,才好与秘密数字进行比较。这可以通过在 main 函数体中增加如下代码来实现:

文件名:src/main.rs

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    println!("Please input your guess.");

    // --snip--

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    let guess: u32 = guess.trim().parse().expect("Please type a number!");

    println!("You guessed: {guess}");

    match guess.cmp(&secret_number) {
        Ordering::Less => println!("Too small!"),
        Ordering::Greater => println!("Too big!"),
        Ordering::Equal => println!("You win!"),
    }
}

这行新代码是:

let guess: u32 = guess.trim().parse().expect("Please type a number!");

这里创建了一个叫做 guess 的变量。不过等等,不是已经有了一个叫做 guess 的变量了吗?确实如此,不过 Rust 允许用一个新值来 隐藏Shadowingguess 之前的值。这个功能常用在需要转换值类型之类的场景。它允许我们复用 guess 变量的名字,而不是被迫创建两个不同变量,诸如 guess_strguess 之类。第三章会介绍 shadowing 的更多细节,现在只需知道这个功能经常用于将一个类型的值转换为另一个类型的值。

我们将这个新变量绑定到 guess.trim().parse() 表达式上。表达式中的 guess 指的是包含输入的字符串类型 guess 变量。String 实例的 trim 方法会去除字符串开头和结尾的空白字符,我们必须执行此方法才能将字符串与 u32 比较,因为 u32 只能包含数值型数据。用户必须输入 enter 键才能让 read_line 返回并输入他们的猜想,这将会在字符串中增加一个换行(newline)符。例如,用户输入 5 并按下 enter(在 Windows 上,按下 enter 键会得到一个回车符和一个换行符,\r\n),guess 看起来像这样:5\n 或者 5\r\n\n 代表 “换行”,回车键;\r 代表 “回车”,回车键。trim 方法会消除 \n 或者 \r\n,只留下 5

字符串的 parse 方法 将字符串转换成其他类型。这里用它来把字符串转换为数值。我们需要告诉 Rust 具体的数字类型,这里通过 let guess: u32 指定。guess 后面的冒号(:)告诉 Rust 我们指定了变量的类型。Rust 有一些内建的数字类型;u32 是一个无符号的 32 位整型。对于不大的正整数来说,它是不错的默认类型,第三章还会讲到其他数字类型。

另外,程序中的 u32 注解以及与 secret_number 的比较,意味着 Rust 会推断出 secret_number 也是 u32 类型。现在可以使用相同类型比较两个值了!

parse 方法只有在字符逻辑上可以转换为数字的时候才能工作所以非常容易出错。例如,字符串中包含 A👍%,就无法将其转换为一个数字。因此,parse 方法返回一个 Result 类型。像之前 “使用 Result 类型来处理潜在的错误” 讨论的 read_line 方法那样,再次按部就班的用 expect 方法处理即可。如果 parse 不能从字符串生成一个数字,返回一个 ResultErr 成员时,expect 会使游戏崩溃并打印附带的信息。如果 parse 成功地将字符串转换为一个数字,它会返回 ResultOk 成员,然后 expect 会返回 Ok 值中的数字。

现在让我们运行程序!

$ cargo run
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished dev [unoptimized + debuginfo] target(s) in 0.43s
     Running `target/debug/guessing_game`
Guess the number!
The secret number is: 58
Please input your guess.
  76
You guessed: 76
Too big!

漂亮!即便是在猜测之前添加了空格,程序依然能判断出用户猜测了 76。多运行程序几次,输入不同的数字来检验不同的行为:猜一个正确的数字,猜一个过大的数字和猜一个过小的数字。

现在游戏已经大体上能玩了,不过用户只能猜一次。增加一个循环来改变它吧!

使用循环来允许多次猜测

loop 关键字创建了一个无限循环。我们会增加循环来给用户更多机会猜数字:

文件名:src/main.rs

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    // --snip--

    println!("The secret number is: {secret_number}");

    loop {
        println!("Please input your guess.");

        // --snip--


        let mut guess = String::new();

        io::stdin()
            .read_line(&mut guess)
            .expect("Failed to read line");

        let guess: u32 = guess.trim().parse().expect("Please type a number!");

        println!("You guessed: {guess}");

        match guess.cmp(&secret_number) {
            Ordering::Less => println!("Too small!"),
            Ordering::Greater => println!("Too big!"),
            Ordering::Equal => println!("You win!"),
        }
    }
}

如上所示,我们将提示用户猜测之后的所有内容移动到了循环中。确保 loop 循环中的代码多缩进四个空格,再次运行程序。注意这里有一个新问题,因为程序忠实地执行了我们的要求:永远地请求另一个猜测,用户好像无法退出啊!

用户总能使用 ctrl-c 终止程序。不过还有另一个方法跳出无限循环,就是 “比较猜测与秘密数字” 部分提到的 parse:如果用户输入的答案不是一个数字,程序会崩溃。我们可以利用这一点来退出,如下所示:

$ cargo run
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished dev [unoptimized + debuginfo] target(s) in 1.50s
     Running `target/debug/guessing_game`
Guess the number!
The secret number is: 59
Please input your guess.
45
You guessed: 45
Too small!
Please input your guess.
60
You guessed: 60
Too big!
Please input your guess.
59
You guessed: 59
You win!
Please input your guess.
quit
thread 'main' panicked at 'Please type a number!: ParseIntError { kind: InvalidDigit }', src/main.rs:28:47
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

输入 quit 将会退出程序,同时你会注意到其他任何非数字输入也一样。然而,这并不理想,我们想要当猜测正确的数字时游戏停止。

猜测正确后退出

让我们增加一个 break 语句,在用户猜对时退出游戏:

文件名:src/main.rs

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    loop {
        println!("Please input your guess.");

        let mut guess = String::new();

        io::stdin()
            .read_line(&mut guess)
            .expect("Failed to read line");

        let guess: u32 = guess.trim().parse().expect("Please type a number!");

        println!("You guessed: {guess}");

        // --snip--

        match guess.cmp(&secret_number) {
            Ordering::Less => println!("Too small!"),
            Ordering::Greater => println!("Too big!"),
            Ordering::Equal => {
                println!("You win!");
                break;
            }
        }
    }
}

通过在 You win! 之后增加一行 break,用户猜对了神秘数字后会退出循环。退出循环也意味着退出程序,因为循环是 main 的最后一部分。

处理无效输入

为了进一步改善游戏性,不要在用户输入非数字时崩溃,需要忽略非数字,让用户可以继续猜测。可以通过修改 guessString 转化为 u32 那部分代码来实现,如示例 2-5 所示:

文件名:src/main.rs

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    loop {
        println!("Please input your guess.");

        let mut guess = String::new();

        // --snip--

        io::stdin()
            .read_line(&mut guess)
            .expect("Failed to read line");

        let guess: u32 = match guess.trim().parse() {
            Ok(num) => num,
            Err(_) => continue,
        };

        println!("You guessed: {guess}");

        // --snip--

        match guess.cmp(&secret_number) {
            Ordering::Less => println!("Too small!"),
            Ordering::Greater => println!("Too big!"),
            Ordering::Equal => {
                println!("You win!");
                break;
            }
        }
    }
}

示例 2-5: 忽略非数字的猜测并重新请求数字而不是让程序崩溃

我们将 expect 调用换成 match 语句,以从遇到错误就崩溃转换为处理错误。须知 parse 返回一个 Result 类型,而 Result 是一个拥有 OkErr 成员的枚举。这里使用的 match 表达式,和之前处理 cmp 方法返回 Ordering 时用的一样。

如果 parse 能够成功的将字符串转换为一个数字,它会返回一个包含结果数字的 Ok。这个 Ok 值与 match 第一个分支的模式相匹配,该分支对应的动作返回 Ok 值中的数字 num,最后如愿变成新创建的 guess 变量。

如果 parse 能将字符串转换为一个数字,它会返回一个包含更多错误信息的 ErrErr 值不能匹配第一个 match 分支的 Ok(num) 模式,但是会匹配第二个分支的 Err(_) 模式:_ 是一个通配符值,本例中用来匹配所有 Err 值,不管其中有何种信息。所以程序会执行第二个分支的动作,continue 意味着进入 loop 的下一次循环,请求另一个猜测。这样程序就有效的忽略了 parse 可能遇到的所有错误!

现在万事俱备,只需运行 cargo run

$ cargo run
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished dev [unoptimized + debuginfo] target(s) in 4.45s
     Running `target/debug/guessing_game`
Guess the number!
The secret number is: 61
Please input your guess.
10
You guessed: 10
Too small!
Please input your guess.
99
You guessed: 99
Too big!
Please input your guess.
foo
Please input your guess.
61
You guessed: 61
You win!

太棒了!再有最后一个小的修改,就能完成猜猜看游戏了:还记得程序依然会打印出秘密数字。在测试时还好,但正式发布时会毁了游戏。删掉打印秘密数字的 println!。示例 2-6 为最终代码:

文件名:src/main.rs

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    loop {
        println!("Please input your guess.");

        let mut guess = String::new();

        io::stdin()
            .read_line(&mut guess)
            .expect("Failed to read line");

        let guess: u32 = match guess.trim().parse() {
            Ok(num) => num,
            Err(_) => continue,
        };

        println!("You guessed: {guess}");

        match guess.cmp(&secret_number) {
            Ordering::Less => println!("Too small!"),
            Ordering::Greater => println!("Too big!"),
            Ordering::Equal => {
                println!("You win!");
                break;
            }
        }
    }
}

示例 2-6:猜猜看游戏的完整代码

此时此刻,你顺利完成了猜猜看游戏。恭喜!

总结

本项目通过动手实践,向你介绍了 Rust 新概念:letmatch、函数、使用外部 crate 等等,接下来的几章,你会继续深入学习这些概念。第三章介绍大部分编程语言都有的概念,比如变量、数据类型和函数,以及如何在 Rust 中使用它们。第四章探索所有权(ownership),这是一个 Rust 同其他语言大不相同的功能。第五章讨论结构体和方法的语法,而第六章侧重解释枚举。

常见编程概念

ch03-00-common-programming-concepts.md
commit d0acb2595c891de97a133d06635c50ab449dd65c

本章介绍一些几乎所有编程语言都有的概念,以及它们在 Rust 中是如何工作的。很多编程语言的核心概念都是共通的,本章中展示的概念都不是 Rust 所特有的,不过我们会在 Rust 上下文中讨论它们,并解释使用这些概念的惯例。

具体来说,我们将会学习变量、基本类型、函数、注释和控制流。每一个 Rust 程序中都会用到这些基础知识,提早学习这些概念会让你在起步时就打下坚实的基础。

关键字

Rust 语言有一组保留的 关键字keywords),就像大部分语言一样,它们只能由语言本身使用。记住,你不能使用这些关键字作为变量或函数的名称。大部分关键字有特殊的意义,你将在 Rust 程序中使用它们完成各种任务;一些关键字目前没有相应的功能,是为将来可能添加的功能保留的。可以在附录 A 中找到关键字的列表。

变量和可变性

ch03-01-variables-and-mutability.md

commit 21a2ed14f4480dab62438dcc1130291bebc65379

正如第二章中“使用变量储存值” 部分提到的那样,变量默认是不可改变的(immutable)。这是 Rust 提供给你的众多优势之一,让你得以充分利用 Rust 提供的安全性和简单并发性来编写代码。不过,你仍然可以使用可变变量。让我们探讨一下 Rust 为何及如何鼓励你利用不可变性,以及何时你会选择不使用不可变性。

当变量不可变时,一旦值被绑定一个名称上,你就不能改变这个值。为了对此进行说明,使用 cargo new variables 命令在 projects 目录生成一个叫做 variables 的新项目。

接着,在新建的 variables 目录,打开 src/main.rs 并将代码替换为如下代码,这些代码还不能编译,我们会首次检查到不可变错误(immutability error)。

文件名:src/main.rs

fn main() {
    let x = 5;
    println!("The value of x is: {x}");
    x = 6;
    println!("The value of x is: {x}");
}

保存并使用 cargo run 运行程序。应该会看到一条与不可变性有关的错误信息,如下输出所示:

$ cargo run
   Compiling variables v0.1.0 (file:///projects/variables)
error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:4:5
  |
2 |     let x = 5;
  |         -
  |         |
  |         first assignment to `x`
  |         help: consider making this binding mutable: `mut x`
3 |     println!("The value of x is: {x}");
4 |     x = 6;
  |     ^^^^^ cannot assign twice to immutable variable

For more information about this error, try `rustc --explain E0384`.
error: could not compile `variables` due to previous error

这个例子展示了编译器如何帮助你找出程序中的错误。虽然编译错误令人沮丧,但那只是表示程序不能安全的完成你想让它完成的工作;并 不能 说明你不是一个好程序员!经验丰富的 Rustacean 们一样会遇到编译错误。

错误信息指出错误的原因是 不能对不可变变量 x 二次赋值cannot assign twice to immutable variable `x` ),因为你尝试对不可变变量 x 赋第二个值。

在尝试改变预设为不可变的值时,产生编译时错误是很重要的,因为这种情况可能导致 bug。如果一部分代码假设一个值永远也不会改变,而另一部分代码改变了这个值,第一部分代码就有可能以不可预料的方式运行。不得不承认这种 bug 的起因难以跟踪,尤其是第二部分代码只是 有时 会改变值。

Rust 编译器保证,如果声明一个值不会变,它就真的不会变,所以你不必自己跟踪它。这意味着你的代码更易于推导。

不过可变性也是非常有用的,可以用来更方便地编写代码。尽管变量默认是不可变的,你仍然可以在变量名前添加 mut 来使其可变,正如在第二章所做的那样。mut 也向读者表明了其他代码将会改变这个变量值的意图。

例如,让我们将 src/main.rs 修改为如下代码:

文件名:src/main.rs

fn main() {
    let mut x = 5;
    println!("The value of x is: {x}");
    x = 6;
    println!("The value of x is: {x}");
}

现在运行这个程序,出现如下内容:

$ cargo run
   Compiling variables v0.1.0 (file:///projects/variables)
    Finished dev [unoptimized + debuginfo] target(s) in 0.30s
     Running `target/debug/variables`
The value of x is: 5
The value of x is: 6

通过 mut,允许把绑定到 x 的值从 5 改成 6。是否让变量可变的最终决定权仍然在你,取决于在某个特定情况下,你是否认为变量可变会让代码更加清晰明了。

常量

类似于不可变变量,常量 (constants) 是绑定到一个名称的不允许改变的值,不过常量与变量还是有一些区别。

首先,不允许对常量使用 mut。常量不光默认不可变,它总是不可变。声明常量使用 const 关键字而不是 let,并且 必须 注明值的类型。在下一部分,“数据类型” 中会介绍类型和类型注解,现在无需关心这些细节,记住总是标注类型即可。

常量可以在任何作用域中声明,包括全局作用域,这在一个值需要被很多部分的代码用到时很有用。

最后一个区别是,常量只能被设置为常量表达式,而不可以是其他任何只能在运行时计算出的值。

下面是一个声明常量的例子:

#![allow(unused)]
fn main() {
const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;
}

常量的名称是 THREE_HOURS_IN_SECONDS,它的值被设置为 60(一分钟内的秒数)乘以 60(一小时内的分钟数)再乘以 3(我们在这个程序中要计算的小时数)的结果。Rust 对常量的命名约定是在单词之间使用全大写加下划线。编译器能够在编译时计算一组有限的操作,这使我们可以选择以更容易理解和验证的方式写出此值,而不是将此常量设置为值 10,800。有关声明常量时可以使用哪些操作的详细信息,请参阅 Rust Reference 的常量求值部分

在声明它的作用域之中,常量在整个程序生命周期中都有效,此属性使得常量可以作为多处代码使用的全局范围的值,例如一个游戏中所有玩家可以获取的最高分或者光速。

将遍布于应用程序中的硬编码值声明为常量,能帮助后来的代码维护人员了解值的意图。如果将来需要修改硬编码值,也只需修改汇聚于一处的硬编码值。

隐藏

正如在第二章猜数字游戏中所讲,我们可以定义一个与之前变量同名的新变量。Rustacean 们称之为第一个变量被第二个 隐藏(Shadowing) 了,这意味着当您使用变量的名称时,编译器将看到第二个变量。实际上,第二个变量“遮蔽”了第一个变量,此时任何使用该变量名的行为中都会视为是在使用第二个变量,直到第二个变量自己也被隐藏或第二个变量的作用域结束。可以用相同变量名称来隐藏一个变量,以及重复使用 let 关键字来多次隐藏,如下所示:

文件名:src/main.rs

fn main() {
    let x = 5;

    let x = x + 1;

    {
        let x = x * 2;
        println!("The value of x in the inner scope is: {x}");
    }

    println!("The value of x is: {x}");
}

这个程序首先将 x 绑定到值 5 上。接着通过 let x = 创建了一个新变量 x,获取初始值并加 1,这样 x 的值就变成 6 了。然后,在使用花括号创建的内部作用域内,第三个 let 语句也隐藏了 x 并创建了一个新的变量,将之前的值乘以 2x 得到的值是 12。当该作用域结束时,内部 shadowing 的作用域也结束了,x 又返回到 6。运行这个程序,它会有如下输出:

$ cargo run
   Compiling variables v0.1.0 (file:///projects/variables)
    Finished dev [unoptimized + debuginfo] target(s) in 0.31s
     Running `target/debug/variables`
The value of x in the inner scope is: 12
The value of x is: 6

隐藏与将变量标记为 mut 是有区别的。当不小心尝试对变量重新赋值时,如果没有使用 let 关键字,就会导致编译时错误。通过使用 let,我们可以用这个值进行一些计算,不过计算完之后变量仍然是不可变的。

mut 与隐藏的另一个区别是,当再次使用 let 时,实际上创建了一个新变量,我们可以改变值的类型,并且复用这个名字。例如,假设程序请求用户输入空格字符来说明希望在文本之间显示多少个空格,接下来我们想将输入存储成数字(多少个空格):

fn main() {
    let spaces = "   ";
    let spaces = spaces.len();
}

第一个 spaces 变量是字符串类型,第二个 spaces 变量是数字类型。隐藏使我们不必使用不同的名字,如 spaces_strspaces_num;相反,我们可以复用 spaces 这个更简单的名字。然而,如果尝试使用 mut,将会得到一个编译时错误,如下所示:

fn main() {
    let mut spaces = "   ";
    spaces = spaces.len();
}

这个错误说明,我们不能改变变量的类型:

$ cargo run
   Compiling variables v0.1.0 (file:///projects/variables)
error[E0308]: mismatched types
 --> src/main.rs:3:14
  |
2 |     let mut spaces = "   ";
  |                      ----- expected due to this value
3 |     spaces = spaces.len();
  |              ^^^^^^^^^^^^ expected `&str`, found `usize`

For more information about this error, try `rustc --explain E0308`.
error: could not compile `variables` due to previous error

现在我们已经了解了变量如何工作,让我们看看变量可以拥有的更多数据类型。

数据类型

ch03-02-data-types.md
commit d0acb2595c891de97a133d06635c50ab449dd65c

在 Rust 中,每一个值都属于某一个 数据类型data type),这告诉 Rust 它被指定为何种数据,以便明确数据处理方式。我们将看到两类数据类型子集:标量(scalar)和复合(compound)。

记住,Rust 是 静态类型statically typed)语言,也就是说在编译时就必须知道所有变量的类型。根据值及其使用方式,编译器通常可以推断出我们想要用的类型。当多种类型均有可能时,比如第二章的 “比较猜测的数字和秘密数字” 使用 parseString 转换为数字时,必须增加类型注解,像这样:

#![allow(unused)]
fn main() {
let guess: u32 = "42".parse().expect("Not a number!");
}

如果不像上面的代码这样添加类型注解 : u32,Rust 会显示如下错误,这说明编译器需要我们提供更多信息,来了解我们想要的类型:

$ cargo build
   Compiling no_type_annotations v0.1.0 (file:///projects/no_type_annotations)
error[E0282]: type annotations needed
 --> src/main.rs:2:9
  |
2 |     let guess = "42".parse().expect("Not a number!");
  |         ^^^^^
  |
help: consider giving `guess` an explicit type
  |
2 |     let guess: _ = "42".parse().expect("Not a number!");
  |              +++

For more information about this error, try `rustc --explain E0282`.
error: could not compile `no_type_annotations` due to previous error

你会看到其它数据类型的各种类型注解。

标量类型

标量scalar)类型代表一个单独的值。Rust 有四种基本的标量类型:整型、浮点型、布尔类型和字符类型。你可能在其他语言中见过它们。让我们深入了解它们在 Rust 中是如何工作的。

整型

整数 是一个没有小数部分的数字。我们在第二章使用过 u32 整数类型。该类型声明表明,它关联的值应该是一个占据 32 比特位的无符号整数(有符号整数类型以 i 开头而不是 u)。表格 3-1 展示了 Rust 内建的整数类型。我们可以使用其中的任一个来声明一个整数值的类型。

表格 3-1: Rust 中的整型

长度有符号无符号
8-biti8u8
16-biti16u16
32-biti32u32
64-biti64u64
128-biti128u128
archisizeusize

每一个变体都可以是有符号或无符号的,并有一个明确的大小。有符号无符号 代表数字能否为负值,换句话说,这个数字是否有可能是负数(有符号数),或者永远为正而不需要符号(无符号数)。这有点像在纸上书写数字:当需要考虑符号的时候,数字以加号或减号作为前缀;然而,可以安全地假设为正数时,加号前缀通常省略。有符号数以补码形式(two’s complement representation) 存储。

每一个有符号的变体可以储存包含从 -(2n - 1) 到 2n - 1 - 1 在内的数字,这里 n 是变体使用的位数。所以 i8 可以储存从 -(27) 到 27 - 1 在内的数字,也就是从 -128 到 127。无符号的变体可以储存从 0 到 2n - 1 的数字,所以 u8 可以储存从 0 到 28 - 1 的数字,也就是从 0 到 255。

另外,isizeusize 类型依赖运行程序的计算机架构:64 位架构上它们是 64 位的,32 位架构上它们是 32 位的。

可以使用表格 3-2 中的任何一种形式编写数字字面值。请注意可以是多种数字类型的数字字面值允许使用类型后缀,例如 57u8 来指定类型,同时也允许使用 _ 做为分隔符以方便读数,例如1_000,它的值与你指定的 1000 相同。

表格 3-2: Rust 中的整型字面值

数字字面值例子
Decimal (十进制)98_222
Hex (十六进制)0xff
Octal (八进制)0o77
Binary (二进制)0b1111_0000
Byte (单字节字符)(仅限于u8)b'A'

那么该使用哪种类型的数字呢?如果拿不定主意,Rust 的默认类型通常是个不错的起点,数字类型默认是 i32isizeusize 主要作为某些集合的索引。

整型溢出

比方说有一个 u8 ,它可以存放从零到 255 的值。那么当你将其修改为 256 时会发生什么呢?这被称为 “整型溢出”(“integer overflow” ),这会导致以下两种行为之一的发生。当在 debug 模式编译时,Rust 检查这类问题并使程序 panic,这个术语被 Rust 用来表明程序因错误而退出。第九章 panic! 与不可恢复的错误” 部分会详细介绍 panic。

使用 --release flag 在 release 模式中构建时,Rust 不会检测会导致 panic 的整型溢出。相反发生整型溢出时,Rust 会进行一种被称为二进制补码 wrapping(two’s complement wrapping)的操作。简而言之,比此类型能容纳最大值还大的值会回绕到最小值,值 256 变成 0,值 257 变成 1,依此类推。程序不会 panic,不过变量可能也不会是你所期望的值。依赖整型溢出 wrapping 的行为被认为是一种错误。

为了显式地处理溢出的可能性,可以使用这几类标准库提供的原始数字类型方法:

  • 所有模式下都可以使用 wrapping_* 方法进行 wrapping,如 wrapping_add
  • 如果 checked_* 方法出现溢出,则返回 None
  • overflowing_* 方法返回值和一个布尔值,表示是否出现溢出
  • saturating_* 方法在值的最小值或最大值处进行饱和处理

浮点型

Rust 也有两个原生的 浮点数floating-point numbers)类型,它们是带小数点的数字。Rust 的浮点数类型是 f32f64,分别占 32 位和 64 位。默认类型是 f64,因为在现代 CPU 中,它与 f32 速度几乎一样,不过精度更高。所有的浮点型都是有符号的。

这是一个展示浮点数的实例:

文件名:src/main.rs

fn main() {
    let x = 2.0; // f64

    let y: f32 = 3.0; // f32
}

浮点数采用 IEEE-754 标准表示。f32 是单精度浮点数,f64 是双精度浮点数。

数值运算

Rust 中的所有数字类型都支持基本数学运算:加法、减法、乘法、除法和取余。整数除法会向零舍入到最接近的整数。下面的代码展示了如何在 let 语句中使用它们:

文件名:src/main.rs

fn main() {
    // addition
    let sum = 5 + 10;

    // subtraction
    let difference = 95.5 - 4.3;

    // multiplication
    let product = 4 * 30;

    // division
    let quotient = 56.7 / 32.2;
    let truncated = -5 / 3; // 结果为 -1

    // remainder
    let remainder = 43 % 5;
}

这些语句中的每个表达式使用了一个数学运算符并计算出了一个值,然后绑定给一个变量。附录 B 包含 Rust 提供的所有运算符的列表。

布尔型

正如其他大部分编程语言一样,Rust 中的布尔类型有两个可能的值:truefalse。Rust 中的布尔类型使用 bool 表示。例如:

文件名:src/main.rs

fn main() {
    let t = true;

    let f: bool = false; // with explicit type annotation
}

使用布尔值的主要场景是条件表达式,例如 if 表达式。在 “控制流”(“Control Flow”) 部分将介绍 if 表达式在 Rust 中如何工作。

字符类型

Rust 的 char 类型是语言中最原生的字母类型。下面是一些声明 char 值的例子:

文件名:src/main.rs

fn main() {
    let c = 'z';
    let z: char = 'ℤ'; // with explicit type annotation
    let heart_eyed_cat = '😻';
}

注意,我们用单引号声明 char 字面量,而与之相反的是,使用双引号声明字符串字面量。Rust 的 char 类型的大小为四个字节 (four bytes),并代表了一个 Unicode 标量值(Unicode Scalar Value),这意味着它可以比 ASCII 表示更多内容。在 Rust 中,带变音符号的字母(Accented letters),中文、日文、韩文等字符,emoji(绘文字)以及零长度的空白字符都是有效的 char 值。Unicode 标量值包含从 U+0000U+D7FFU+E000U+10FFFF 在内的值。不过,“字符” 并不是一个 Unicode 中的概念,所以人直觉上的 “字符” 可能与 Rust 中的 char 并不符合。第八章的 “使用字符串储存 UTF-8 编码的文本” 中将详细讨论这个主题。

复合类型

复合类型Compound types)可以将多个值组合成一个类型。Rust 有两个原生的复合类型:元组(tuple)和数组(array)。

元组类型

元组是一个将多个其他类型的值组合进一个复合类型的主要方式。元组长度固定:一旦声明,其长度不会增大或缩小。

我们使用包含在圆括号中的逗号分隔的值列表来创建一个元组。元组中的每一个位置都有一个类型,而且这些不同值的类型也不必是相同的。这个例子中使用了可选的类型注解:

文件名:src/main.rs

fn main() {
    let tup: (i32, f64, u8) = (500, 6.4, 1);
}

tup 变量绑定到整个元组上,因为元组是一个单独的复合元素。为了从元组中获取单个值,可以使用模式匹配(pattern matching)来解构(destructure)元组值,像这样:

文件名:src/main.rs

fn main() {
    let tup = (500, 6.4, 1);

    let (x, y, z) = tup;

    println!("The value of y is: {y}");
}

程序首先创建了一个元组并绑定到 tup 变量上。接着使用了 let 和一个模式将 tup 分成了三个不同的变量,xyz。这叫做 解构destructuring),因为它将一个元组拆成了三个部分。最后,程序打印出了 y 的值,也就是 6.4

我们也可以使用点号(.)后跟值的索引来直接访问它们。例如:

文件名:src/main.rs

fn main() {
    let x: (i32, f64, u8) = (500, 6.4, 1);

    let five_hundred = x.0;

    let six_point_four = x.1;

    let one = x.2;
}

这个程序创建了一个元组,x,然后使用其各自的索引访问元组中的每个元素。跟大多数编程语言一样,元组的第一个索引值是 0。

不带任何值的元组有个特殊的名称,叫做 单元(unit) 元组。这种值以及对应的类型都写作 (),表示空值或空的返回类型。如果表达式不返回任何其他值,则会隐式返回单元值。

数组类型

另一个包含多个值的方式是 数组array)。与元组不同,数组中的每个元素的类型必须相同。Rust 中的数组与一些其他语言中的数组不同,Rust 中的数组长度是固定的。

我们将数组的值写成在方括号内,用逗号分隔:

文件名:src/main.rs

fn main() {
    let a = [1, 2, 3, 4, 5];
}

当你想要在栈(stack)而不是在堆(heap)上为数据分配空间(第四章将讨论栈与堆的更多内容),或者是想要确保总是有固定数量的元素时,数组非常有用。但是数组并不如 vector 类型灵活。vector 类型是标准库提供的一个 允许 增长和缩小长度的类似数组的集合类型。当不确定是应该使用数组还是 vector 的时候,那么很可能应该使用 vector。第八章会详细讨论 vector。

然而,当你确定元素个数不会改变时,数组会更有用。例如,当你在一个程序中使用月份名字时,你更应趋向于使用数组而不是 vector,因为你确定只会有 12 个元素。

#![allow(unused)]
fn main() {
let months = ["January", "February", "March", "April", "May", "June", "July",
              "August", "September", "October", "November", "December"];
}

可以像这样编写数组的类型:在方括号中包含每个元素的类型,后跟分号,再后跟数组元素的数量。

#![allow(unused)]
fn main() {
let a: [i32; 5] = [1, 2, 3, 4, 5];
}

这里,i32 是每个元素的类型。分号之后,数字 5 表明该数组包含五个元素。

你还可以通过在方括号中指定初始值加分号再加元素个数的方式来创建一个每个元素都为相同值的数组:

#![allow(unused)]
fn main() {
let a = [3; 5];
}

变量名为 a 的数组将包含 5 个元素,这些元素的值最初都将被设置为 3。这种写法与 let a = [3, 3, 3, 3, 3]; 效果相同,但更简洁。

访问数组元素

数组是可以在栈 (stack) 上分配的已知固定大小的单个内存块。可以使用索引来访问数组的元素,像这样:

文件名:src/main.rs

fn main() {
    let a = [1, 2, 3, 4, 5];

    let first = a[0];
    let second = a[1];
}

在这个例子中,叫做 first 的变量的值是 1,因为它是数组索引 [0] 的值。变量 second 将会是数组索引 [1] 的值 2

无效的数组元素访问

让我们看看如果我们访问数组结尾之后的元素会发生什么呢?比如你执行以下代码,它使用类似于第 2 章中的猜数字游戏的代码从用户那里获取数组索引:

文件名:src/main.rs

use std::io;

fn main() {
    let a = [1, 2, 3, 4, 5];

    println!("Please enter an array index.");

    let mut index = String::new();

    io::stdin()
        .read_line(&mut index)
        .expect("Failed to read line");

    let index: usize = index
        .trim()
        .parse()
        .expect("Index entered was not a number");

    let element = a[index];

    println!("The value of the element at index {index} is: {element}");
}

此代码编译成功。如果您使用 cargo run 运行此代码并输入 01234,程序将在数组中的索引处打印出相应的值。如果你输入一个超过数组末端的数字,如 10,你会看到这样的输出:

thread 'main' panicked at 'index out of bounds: the len is 5 but the index is 10', src/main.rs:19:19
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

程序在索引操作中使用一个无效的值时导致 运行时 错误。程序带着错误信息退出,并且没有执行最后的 println! 语句。当尝试用索引访问一个元素时,Rust 会检查指定的索引是否小于数组的长度。如果索引超出了数组长度,Rust 会 panic,这是 Rust 术语,它用于程序因为错误而退出的情况。这种检查必须在运行时进行,特别是在这种情况下,因为编译器不可能知道用户在以后运行代码时将输入什么值。

这是第一个在实战中遇到的 Rust 安全原则的例子。在很多底层语言中,并没有进行这类检查,这样当提供了一个不正确的索引时,就会访问无效的内存。通过立即退出而不是允许内存访问并继续执行,Rust 让你避开此类错误。第九章会更详细地讨论 Rust 的错误处理机制,以及如何编写可读性强而又安全的代码,使程序既不会 panic 也不会导致非法内存访问。

函数

ch03-03-how-functions-work.md
commit d0acb2595c891de97a133d06635c50ab449dd65c

函数在 Rust 代码中非常普遍。你已经见过语言中最重要的函数之一:main 函数,它是很多程序的入口点。你也见过 fn 关键字,它用来声明新函数。

Rust 代码中的函数和变量名使用 snake case 规范风格。在 snake case 中,所有字母都是小写并使用下划线分隔单词。这是一个包含函数定义示例的程序:

文件名:src/main.rs

fn main() {
    println!("Hello, world!");

    another_function();
}

fn another_function() {
    println!("Another function.");
}

我们在 Rust 中通过输入 fn 后面跟着函数名和一对圆括号来定义函数。大括号告诉编译器哪里是函数体的开始和结尾。

可以使用函数名后跟圆括号来调用我们定义过的任意函数。因为程序中已定义 another_function 函数,所以可以在 main 函数中调用它。注意,源码中 another_function 定义在 main 函数 之后;也可以定义在之前。Rust 不关心函数定义所在的位置,只要函数被调用时出现在调用之处可见的作用域内就行。

让我们新建一个叫做 functions 的二进制项目来进一步探索函数。将上面的 another_function 例子写入 src/main.rs 中并运行。你应该会看到如下输出:

$ cargo run
   Compiling functions v0.1.0 (file:///projects/functions)
    Finished dev [unoptimized + debuginfo] target(s) in 0.28s
     Running `target/debug/functions`
Hello, world!
Another function.

main 函数中的代码会按顺序执行。首先,打印 “Hello, world!” 信息,然后调用 another_function 函数并打印它的信息。

参数

我们可以定义为拥有 参数parameters)的函数,参数是特殊变量,是函数签名的一部分。当函数拥有参数(形参)时,可以为这些参数提供具体的值(实参)。技术上讲,这些具体值被称为参数(arguments),但是在日常交流中,人们倾向于不区分使用 parameterargument 来表示函数定义中的变量或调用函数时传入的具体值。

在这版 another_function 中,我们增加了一个参数:

文件名:src/main.rs

fn main() {
    another_function(5);
}

fn another_function(x: i32) {
    println!("The value of x is: {x}");
}

尝试运行程序,将会输出如下内容:

$ cargo run
   Compiling functions v0.1.0 (file:///projects/functions)
    Finished dev [unoptimized + debuginfo] target(s) in 1.21s
     Running `target/debug/functions`
The value of x is: 5

another_function 的声明中有一个命名为 x 的参数。x 的类型被指定为 i32。当我们将 5 传给 another_function 时,println! 宏会把 5 放在格式字符串中包含 x 的那对花括号的位置。

在函数签名中,必须 声明每个参数的类型。这是 Rust 设计中一个经过慎重考虑的决定:要求在函数定义中提供类型注解,意味着编译器再也不需要你在代码的其他地方注明类型来指出你的意图。而且,在知道函数需要什么类型后,编译器就能够给出更有用的错误消息。

当定义多个参数时,使用逗号分隔,像这样:

文件名:src/main.rs

fn main() {
    print_labeled_measurement(5, 'h');
}

fn print_labeled_measurement(value: i32, unit_label: char) {
    println!("The measurement is: {value}{unit_label}");
}

这个例子创建了一个名为 print_labeled_measurement 的函数,它有两个参数。第一个参数名为 value,类型是 i32。第二个参数是 unit_label ,类型是 char。然后,该函数打印包含 valueunit_label 的文本。

尝试运行代码。使用上面的例子替换当前 functions 项目的 src/main.rs 文件,并用 cargo run 运行它:

$ cargo run
   Compiling functions v0.1.0 (file:///projects/functions)
    Finished dev [unoptimized + debuginfo] target(s) in 0.31s
     Running `target/debug/functions`
The measurement is: 5h

因为我们使用 5 作为 value 的值,h 作为 unit_label 的值来调用函数,所以程序输出包含这些值。

语句和表达式

函数体由一系列的语句和一个可选的结尾表达式构成。目前为止,我们提到的函数还不包含结尾表达式,不过你已经见过作为语句一部分的表达式。因为 Rust 是一门基于表达式(expression-based)的语言,这是一个需要理解的(不同于其他语言)重要区别。其他语言并没有这样的区别,所以让我们看看语句与表达式有什么区别以及这些区别是如何影响函数体的。

语句Statements)是执行一些操作但不返回值的指令。 表达式Expressions)计算并产生一个值。让我们看一些例子。

实际上,我们已经使用过语句和表达式。使用 let 关键字创建变量并绑定一个值是一个语句。在列表 3-1 中,let y = 6; 是一个语句。

文件名:src/main.rs

fn main() {
    let y = 6;
}

列表 3-1:包含一个语句的 main 函数定义

函数定义也是语句,上面整个例子本身就是一个语句。

语句不返回值。因此,不能把 let 语句赋值给另一个变量,比如下面的例子尝试做的,会产生一个错误:

文件名:src/main.rs

fn main() {
    let x = (let y = 6);
}

当运行这个程序时,会得到如下错误:

$ cargo run
   Compiling functions v0.1.0 (file:///projects/functions)
error: expected expression, found `let` statement
 --> src/main.rs:2:14
  |
2 |     let x = (let y = 6);
  |              ^^^

error: expected expression, found statement (`let`)
 --> src/main.rs:2:14
  |
2 |     let x = (let y = 6);
  |              ^^^^^^^^^
  |
  = note: variable declaration using `let` is a statement

error[E0658]: `let` expressions in this position are unstable
 --> src/main.rs:2:14
  |
2 |     let x = (let y = 6);
  |              ^^^^^^^^^
  |
  = note: see issue #53667 <https://github.com/rust-lang/rust/issues/53667> for more information

warning: unnecessary parentheses around assigned value
 --> src/main.rs:2:13
  |
2 |     let x = (let y = 6);
  |             ^         ^
  |
  = note: `#[warn(unused_parens)]` on by default
help: remove these parentheses
  |
2 -     let x = (let y = 6);
2 +     let x = let y = 6;
  |

For more information about this error, try `rustc --explain E0658`.
warning: `functions` (bin "functions") generated 1 warning
error: could not compile `functions` due to 3 previous errors; 1 warning emitted

let y = 6 语句并不返回值,所以没有可以绑定到 x 上的值。这与其他语言不同,例如 C 和 Ruby,它们的赋值语句会返回所赋的值。在这些语言中,可以这么写 x = y = 6,这样 xy 的值都是 6;Rust 中不能这样写。

表达式会计算出一个值,并且你将编写的大部分 Rust 代码是由表达式组成的。考虑一个数学运算,比如 5 + 6,这是一个表达式并计算出值 11。表达式可以是语句的一部分:在示例 3-1 中,语句 let y = 6; 中的 6 是一个表达式,它计算出的值是 6。函数调用是一个表达式。宏调用是一个表达式。用大括号创建的一个新的块作用域也是一个表达式,例如:

文件名:src/main.rs

fn main() {
    let y = {
        let x = 3;
        x + 1
    };

    println!("The value of y is: {y}");
}

这个表达式:

{
    let x = 3;
    x + 1
}

是一个代码块,它的值是 4。这个值作为 let 语句的一部分被绑定到 y 上。注意 x+1 这一行在结尾没有分号,与你见过的大部分代码行不同。表达式的结尾没有分号。如果在表达式的结尾加上分号,它就变成了语句,而语句不会返回值。在接下来探索具有返回值的函数和表达式时要谨记这一点。

具有返回值的函数

函数可以向调用它的代码返回值。我们并不对返回值命名,但要在箭头(->)后声明它的类型。在 Rust 中,函数的返回值等同于函数体最后一个表达式的值。使用 return 关键字和指定值,可从函数中提前返回;但大部分函数隐式的返回最后的表达式。这是一个有返回值的函数的例子:

文件名:src/main.rs

fn five() -> i32 {
    5
}

fn main() {
    let x = five();

    println!("The value of x is: {x}");
}

five 函数中没有函数调用、宏、甚至没有 let 语句 —— 只有数字 5。这在 Rust 中是一个完全有效的函数。注意,也指定了函数返回值的类型,就是 -> i32。尝试运行代码;输出应该看起来像这样:

$ cargo run
   Compiling functions v0.1.0 (file:///projects/functions)
    Finished dev [unoptimized + debuginfo] target(s) in 0.30s
     Running `target/debug/functions`
The value of x is: 5

five 函数的返回值是 5,所以返回值类型是 i32。让我们仔细检查一下这段代码。有两个重要的部分:首先,let x = five(); 这一行表明我们使用函数的返回值初始化一个变量。因为 five 函数返回 5,这一行与如下代码相同:

#![allow(unused)]
fn main() {
let x = 5;
}

其次,five 函数没有参数并定义了返回值类型,不过函数体只有单单一个 5 也没有分号,因为这是一个表达式,我们想要返回它的值。

让我们看看另一个例子:

文件名:src/main.rs

fn main() {
    let x = plus_one(5);

    println!("The value of x is: {x}");
}

fn plus_one(x: i32) -> i32 {
    x + 1
}

运行代码会打印出 The value of x is: 6。但如果在包含 x + 1 的行尾加上一个分号,把它从表达式变成语句,我们将看到一个错误。

文件名:src/main.rs

fn main() {
    let x = plus_one(5);

    println!("The value of x is: {x}");
}

fn plus_one(x: i32) -> i32 {
    x + 1;
}

运行代码会产生一个错误,如下:

$ cargo run
   Compiling functions v0.1.0 (file:///projects/functions)
error[E0308]: mismatched types
 --> src/main.rs:7:24
  |
7 | fn plus_one(x: i32) -> i32 {
  |    --------            ^^^ expected `i32`, found `()`
  |    |
  |    implicitly returns `()` as its body has no tail or `return` expression
8 |     x + 1;
  |          - help: remove this semicolon

For more information about this error, try `rustc --explain E0308`.
error: could not compile `functions` due to previous error

主要的错误信息,“mismatched types”(类型不匹配),揭示了代码的核心问题。函数 plus_one 的定义说明它要返回一个 i32 类型的值,不过语句并不会返回值,使用单位类型 () 表示不返回值。因为不返回值与函数定义相矛盾,从而出现一个错误。在输出中,Rust 提供了一条信息,可能有助于纠正这个错误:它建议删除分号,这会修复这个错误。

注释

ch03-04-comments.md
commit d0acb2595c891de97a133d06635c50ab449dd65c

所有程序员都力求使其代码易于理解,不过有时还需要提供额外的解释。在这种情况下,程序员在源码中留下 注释comments),编译器会忽略它们,不过阅读代码的人可能觉得有用。

这是一个简单的注释:

#![allow(unused)]
fn main() {
// hello, world
}

在 Rust 中,惯用的注释样式是以两个斜杠开始注释,并持续到本行的结尾。对于超过一行的注释,需要在每一行前都加上 //,像这样:

#![allow(unused)]
fn main() {
// So we’re doing something complicated here, long enough that we need
// multiple lines of comments to do it! Whew! Hopefully, this comment will
// explain what’s going on.
}

注释也可以放在包含代码的行的末尾:

文件名:src/main.rs

fn main() {
    let lucky_number = 7; // I’m feeling lucky today
}

不过你更经常看到的是以这种格式使用它们,也就是位于它所解释的代码行的上面一行:

文件名:src/main.rs

fn main() {
    // I’m feeling lucky today
    let lucky_number = 7;
}

Rust 还有另一种注释,称为文档注释,我们将在 14 章的 “将 crate 发布到 Crates.io” 部分讨论它。

控制流

ch03-05-control-flow.md
commit d0acb2595c891de97a133d06635c50ab449dd65c

根据条件是否为真来决定是否执行某些代码,以及根据条件是否为真来重复运行一段代码的能力是大部分编程语言的基本组成部分。Rust 代码中最常见的用来控制执行流的结构是 if 表达式和循环。

if 表达式

if 表达式允许根据条件执行不同的代码分支。你提供一个条件并表示 “如果条件满足,运行这段代码;如果条件不满足,不运行这段代码。”

projects 目录新建一个叫做 branches 的项目,来学习 if 表达式。在 src/main.rs 文件中,输入如下内容:

文件名:src/main.rs

fn main() {
    let number = 3;

    if number < 5 {
        println!("condition was true");
    } else {
        println!("condition was false");
    }
}

所有的 if 表达式都以 if 关键字开头,其后跟一个条件。在这个例子中,条件检查变量 number 的值是否小于 5。在条件为 true 时希望执行的代码块位于紧跟条件之后的大括号中。if 表达式中与条件关联的代码块有时被叫做 arms,就像第二章 “比较猜测的数字和秘密数字” 部分中讨论到的 match 表达式中的分支一样。

也可以包含一个可选的 else 表达式来提供一个在条件为 false 时应当执行的代码块,这里我们就这么做了。如果不提供 else 表达式并且条件为 false 时,程序会直接忽略 if 代码块并继续执行下面的代码。

尝试运行代码,应该能看到如下输出:

$ cargo run
   Compiling branches v0.1.0 (file:///projects/branches)
    Finished dev [unoptimized + debuginfo] target(s) in 0.31s
     Running `target/debug/branches`
condition was true

尝试改变 number 的值使条件为 false 时看看会发生什么:

fn main() {
    let number = 7;

    if number < 5 {
        println!("condition was true");
    } else {
        println!("condition was false");
    }
}

再次运行程序并查看输出:

$ cargo run
   Compiling branches v0.1.0 (file:///projects/branches)
    Finished dev [unoptimized + debuginfo] target(s) in 0.31s
     Running `target/debug/branches`
condition was false

另外值得注意的是代码中的条件 必须bool 值。如果条件不是 bool 值,我们将得到一个错误。例如,尝试运行以下代码:

文件名:src/main.rs

fn main() {
    let number = 3;

    if number {
        println!("number was three");
    }
}

这里 if 条件的值是 3,Rust 抛出了一个错误:

$ cargo run
   Compiling branches v0.1.0 (file:///projects/branches)
error[E0308]: mismatched types
 --> src/main.rs:4:8
  |
4 |     if number {
  |        ^^^^^^ expected `bool`, found integer

For more information about this error, try `rustc --explain E0308`.
error: could not compile `branches` due to previous error

这个错误表明 Rust 期望一个 bool 却得到了一个整数。不像 Ruby 或 JavaScript 这样的语言,Rust 并不会尝试自动地将非布尔值转换为布尔值。必须总是显式地使用布尔值作为 if 的条件。例如,如果想要 if 代码块只在一个数字不等于 0 时执行,可以把 if 表达式修改成下面这样:

文件名:src/main.rs

fn main() {
    let number = 3;

    if number != 0 {
        println!("number was something other than zero");
    }
}

运行代码会打印出 number was something other than zero

使用 else if 处理多重条件

可以将 else if 表达式与 ifelse 组合来实现多重条件。例如:

文件名:src/main.rs

fn main() {
    let number = 6;

    if number % 4 == 0 {
        println!("number is divisible by 4");
    } else if number % 3 == 0 {
        println!("number is divisible by 3");
    } else if number % 2 == 0 {
        println!("number is divisible by 2");
    } else {
        println!("number is not divisible by 4, 3, or 2");
    }
}

这个程序有四个可能的执行路径。运行后应该能看到如下输出:

$ cargo run
   Compiling branches v0.1.0 (file:///projects/branches)
    Finished dev [unoptimized + debuginfo] target(s) in 0.31s
     Running `target/debug/branches`
number is divisible by 3

当执行这个程序时,它按顺序检查每个 if 表达式并执行第一个条件为 true 的代码块。注意即使 6 可以被 2 整除,也不会输出 number is divisible by 2,更不会输出 else 块中的 number is not divisible by 4, 3, or 2。原因是 Rust 只会执行第一个条件为 true 的代码块,并且一旦它找到一个以后,甚至都不会检查剩下的条件了。

使用过多的 else if 表达式会使代码显得杂乱无章,所以如果有多于一个 else if 表达式,最好重构代码。为此,第六章会介绍一个强大的 Rust 分支结构(branching construct),叫做 match

let 语句中使用 if

因为 if 是一个表达式,我们可以在 let 语句的右侧使用它,例如在示例 3-2 中:

文件名:src/main.rs

fn main() {
    let condition = true;
    let number = if condition { 5 } else { 6 };

    println!("The value of number is: {number}");
}

示例 3-2:将 if 表达式的返回值赋给一个变量

number 变量将会绑定到表示 if 表达式结果的值上。运行这段代码看看会出现什么:

$ cargo run
   Compiling branches v0.1.0 (file:///projects/branches)
    Finished dev [unoptimized + debuginfo] target(s) in 0.30s
     Running `target/debug/branches`
The value of number is: 5

记住,代码块的值是其最后一个表达式的值,而数字本身就是一个表达式。在这个例子中,整个 if 表达式的值取决于哪个代码块被执行。这意味着 if 的每个分支的可能的返回值都必须是相同类型;在示例 3-2 中,if 分支和 else 分支的结果都是 i32 整型。如果它们的类型不匹配,如下面这个例子,则会出现一个错误:

文件名:src/main.rs

fn main() {
    let condition = true;

    let number = if condition { 5 } else { "six" };

    println!("The value of number is: {number}");
}

当编译这段代码时,会得到一个错误。ifelse 分支的值类型是不相容的,同时 Rust 也准确地指出在程序中的何处发现的这个问题:

$ cargo run
   Compiling branches v0.1.0 (file:///projects/branches)
error[E0308]: `if` and `else` have incompatible types
 --> src/main.rs:4:44
  |
4 |     let number = if condition { 5 } else { "six" };
  |                                 -          ^^^^^ expected integer, found `&str`
  |                                 |
  |                                 expected because of this

For more information about this error, try `rustc --explain E0308`.
error: could not compile `branches` due to previous error

if 代码块中的表达式返回一个整数,而 else 代码块中的表达式返回一个字符串。这不可行,因为变量必须只有一个类型。Rust 需要在编译时就确切的知道 number 变量的类型,这样它就可以在编译时验证在每处使用的 number 变量的类型是有效的。如果number的类型仅在运行时确定,则 Rust 无法做到这一点;且编译器必须跟踪每一个变量的多种假设类型,那么它就会变得更加复杂,对代码的保证也会减少。

使用循环重复执行

多次执行同一段代码是很常用的,Rust 为此提供了多种 循环loops)。一个循环执行循环体中的代码直到结尾并紧接着回到开头继续执行。为了实验一下循环,让我们新建一个叫做 loops 的项目。

Rust 有三种循环:loopwhilefor。我们每一个都试试。

使用 loop 重复执行代码

loop 关键字告诉 Rust 一遍又一遍地执行一段代码直到你明确要求停止。

作为一个例子,将 loops 目录中的 src/main.rs 文件修改为如下:

文件名:src/main.rs

fn main() {
    loop {
        println!("again!");
    }
}

当运行这个程序时,我们会看到连续的反复打印 again!,直到我们手动停止程序。大部分终端都支持一个快捷键,ctrl-c,来终止一个陷入无限循环的程序。尝试一下:

$ cargo run
   Compiling loops v0.1.0 (file:///projects/loops)
    Finished dev [unoptimized + debuginfo] target(s) in 0.29s
     Running `target/debug/loops`
again!
again!
again!
again!
^Cagain!

符号 ^C 代表你在这按下了ctrl-c。在 ^C 之后你可能看到也可能看不到 again! ,这取决于在接收到终止信号时代码执行到了循环的何处。

幸运的是,Rust 提供了一种从代码中跳出循环的方法。可以使用 break 关键字来告诉程序何时停止循环。回忆一下在第二章猜猜看游戏的 “猜测正确后退出” 部分使用过它来在用户猜对数字赢得游戏后退出程序。

我们在猜谜游戏中也使用了 continue。循环中的 continue 关键字告诉程序跳过这个循环迭代中的任何剩余代码,并转到下一个迭代。

从循环返回值

loop 的一个用例是重试可能会失败的操作,比如检查线程是否完成了任务。然而你可能会需要将操作的结果传递给其它的代码。如果将返回值加入你用来停止循环的 break 表达式,它会被停止的循环返回:

fn main() {
    let mut counter = 0;

    let result = loop {
        counter += 1;

        if counter == 10 {
            break counter * 2;
        }
    };

    println!("The result is {result}");
}

在循环之前,我们声明了一个名为 counter 的变量并初始化为 0。接着声明了一个名为 result 来存放循环的返回值。在循环的每一次迭代中,我们将 counter 变量加 1,接着检查计数是否等于 10。当相等时,使用 break 关键字返回值 counter * 2。循环之后,我们通过分号结束赋值给 result 的语句。最后打印出 result 的值,也就是 20

循环标签:在多个循环之间消除歧义

如果存在嵌套循环,breakcontinue 应用于此时最内层的循环。你可以选择在一个循环上指定一个 循环标签loop label),然后将标签与 breakcontinue 一起使用,使这些关键字应用于已标记的循环而不是最内层的循环。下面是一个包含两个嵌套循环的示例

fn main() {
    let mut count = 0;
    'counting_up: loop {
        println!("count = {count}");
        let mut remaining = 10;

        loop {
            println!("remaining = {remaining}");
            if remaining == 9 {
                break;
            }
            if count == 2 {
                break 'counting_up;
            }
            remaining -= 1;
        }

        count += 1;
    }
    println!("End count = {count}");
}

外层循环有一个标签 counting_up,它将从 0 数到 2。没有标签的内部循环从 10 向下数到 9。第一个没有指定标签的 break 将只退出内层循环。break 'counting_up; 语句将退出外层循环。这个代码打印:

$ cargo run
   Compiling loops v0.1.0 (file:///projects/loops)
    Finished dev [unoptimized + debuginfo] target(s) in 0.58s
     Running `target/debug/loops`
count = 0
remaining = 10
remaining = 9
count = 1
remaining = 10
remaining = 9
count = 2
remaining = 10
End count = 2

while 条件循环

在程序中计算循环的条件也很常见。当条件为 true,执行循环。当条件不再为 true,调用 break 停止循环。这个循环类型可以通过组合 loopifelsebreak 来实现;如果你喜欢的话,现在就可以在程序中试试。

然而,这个模式太常用了,Rust 为此内置了一个语言结构,它被称为 while 循环。示例 3-3 使用了 while:程序循环三次,每次数字都减一。接着,在循环结束后,打印出另一个信息并退出。

文件名:src/main.rs

fn main() {
    let mut number = 3;

    while number != 0 {
        println!("{number}!");

        number -= 1;
    }

    println!("LIFTOFF!!!");
}

示例 3-3: 当条件为真时,使用 while 循环运行代码

这种结构消除了很多使用 loopifelsebreak 时所必须的嵌套,这样更加清晰。当条件为 true 就执行,否则退出循环。

使用 for 遍历集合

可以使用 while 结构来遍历集合中的元素,比如数组。例如,看看示例 3-4。

文件名:src/main.rs

fn main() {
    let a = [10, 20, 30, 40, 50];
    let mut index = 0;

    while index < 5 {
        println!("the value is: {}", a[index]);

        index += 1;
    }
}

示例 3-4:使用 while 循环遍历集合中的元素

这里,代码对数组中的元素进行计数。它从索引 0 开始,并接着循环直到遇到数组的最后一个索引(这时,index < 5 不再为真)。运行这段代码会打印出数组中的每一个元素:

$ cargo run
   Compiling loops v0.1.0 (file:///projects/loops)
    Finished dev [unoptimized + debuginfo] target(s) in 0.32s
     Running `target/debug/loops`
the value is: 10
the value is: 20
the value is: 30
the value is: 40
the value is: 50

数组中的所有五个元素都如期被打印出来。尽管 index 在某一时刻会到达值 5,不过循环在其尝试从数组获取第六个值(会越界)之前就停止了。

但这个过程很容易出错;如果索引长度或测试条件不正确会导致程序 panic。例如,如果将 a 数组的定义改为包含 4 个元素而忘记了更新条件 while index < 4,则代码会 panic。这也使程序更慢,因为编译器增加了运行时代码来对每次循环进行条件检查,以确定在循环的每次迭代中索引是否在数组的边界内。

作为更简洁的替代方案,可以使用 for 循环来对一个集合的每个元素执行一些代码。for 循环看起来如示例 3-5 所示:

文件名:src/main.rs

fn main() {
    let a = [10, 20, 30, 40, 50];

    for element in a {
        println!("the value is: {element}");
    }
}

示例 3-5:使用 for 循环遍历集合中的元素

当运行这段代码时,将看到与示例 3-4 一样的输出。更为重要的是,我们增强了代码安全性,并消除了可能由于超出数组的结尾或遍历长度不够而缺少一些元素而导致的 bug。

例如,在示例 3-4 的代码中,如果你将 a 数组的定义改为有四个元素,但忘记将条件更新为 while index < 4,代码将会 panic。使用 for 循环的话,就不需要惦记着在改变数组元素个数时修改其他的代码了。

for 循环的安全性和简洁性使得它成为 Rust 中使用最多的循环结构。即使是在想要循环执行代码特定次数时,例如示例 3-3 中使用 while 循环的倒计时例子,大部分 Rustacean 也会使用 for 循环。这么做的方式是使用 Range,它是标准库提供的类型,用来生成从一个数字开始到另一个数字之前结束的所有数字的序列。

下面是一个使用 for 循环来倒计时的例子,它还使用了一个我们还未讲到的方法,rev,用来反转 range: 注意: 以下代码不会踏足到数字 9 ,仅从一个数字开始到另一个数字之前

文件名:src/main.rs

fn main() {
    for number in (1..4).rev() {
        println!("{number}!");
    }
    println!("LIFTOFF!!!");
}

这段代码看起来更帅气不是吗?

总结

你做到了!这是一个大章节:你学习了变量、标量和复合数据类型、函数、注释、 if 表达式和循环!如果你想要实践本章讨论的概念,尝试构建如下程序:

  • 相互转换摄氏与华氏温度。
  • 生成第 n 个斐波那契数。
  • 打印圣诞颂歌 “The Twelve Days of Christmas” 的歌词,并利用歌曲中的重复部分(编写循环)。

当你准备好继续的时候,让我们讨论一个其他语言中 并不 常见的概念:所有权(ownership)。

认识所有权

ch04-00-understanding-ownership.md
commit a5e0c5b2c5f9054be3b961aea2c7edfeea591de8

所有权(系统)是 Rust 最为与众不同的特性,对语言的其他部分有着深刻含义。它让 Rust 无需垃圾回收(garbage collector)即可保障内存安全,因此理解 Rust 中所有权如何工作是十分重要的。本章,我们将讲到所有权以及相关功能:借用(borrowing)、slice 以及 Rust 如何在内存中布局数据。

什么是所有权?

ch04-01-what-is-ownership.md
commit 3d51f70c78162faaebcab0da0de2ddd333e7a8ed

Rust 的核心功能(之一)是 所有权ownership)。虽然该功能很容易解释,但它对语言的其他部分有着深刻的影响。

所有程序都必须管理其运行时使用计算机内存的方式。一些语言中具有垃圾回收机制,在程序运行时有规律地寻找不再使用的内存;在另一些语言中,程序员必须亲自分配和释放内存。Rust 则选择了第三种方式:通过所有权系统管理内存,编译器在编译时会根据一系列的规则进行检查。如果违反了任何这些规则,程序都不能编译。在运行时,所有权系统的任何功能都不会减慢程序。

因为所有权对很多程序员来说都是一个新概念,需要一些时间来适应。好消息是随着你对 Rust 和所有权系统的规则越来越有经验,你就越能自然地编写出安全和高效的代码。持之以恒!

当你理解了所有权,你将有一个坚实的基础来理解那些使 Rust 独特的功能。在本章中,你将通过完成一些示例来学习所有权,这些示例基于一个常用的数据结构:字符串。

栈(Stack)与堆(Heap)

在很多语言中,你并不需要经常考虑到栈与堆。不过在像 Rust 这样的系统编程语言中,值是位于栈上还是堆上在更大程度上影响了语言的行为以及为何必须做出这样的抉择。我们会在本章的稍后部分描述所有权与栈和堆相关的内容,所以这里只是一个用来预热的简要解释。

栈和堆都是代码在运行时可供使用的内存,但是它们的结构不同。栈以放入值的顺序存储值并以相反顺序取出值。这也被称作 后进先出last in, first out)。想象一下一叠盘子:当增加更多盘子时,把它们放在盘子堆的顶部,当需要盘子时,也从顶部拿走。不能从中间也不能从底部增加或拿走盘子!增加数据叫做 进栈pushing onto the stack),而移出数据叫做 出栈popping off the stack)。栈中的所有数据都必须占用已知且固定的大小。在编译时大小未知或大小可能变化的数据,要改为存储在堆上。 堆是缺乏组织的:当向堆放入数据时,你要请求一定大小的空间。内存分配器(memory allocator)在堆的某处找到一块足够大的空位,把它标记为已使用,并返回一个表示该位置地址的 指针pointer)。这个过程称作 在堆上分配内存allocating on the heap),有时简称为 “分配”(allocating)。(将数据推入栈中并不被认为是分配)。因为指向放入堆中数据的指针是已知的并且大小是固定的,你可以将该指针存储在栈上,不过当需要实际数据时,必须访问指针。想象一下去餐馆就座吃饭。当进入时,你说明有几个人,餐馆员工会找到一个够大的空桌子并领你们过去。如果有人来迟了,他们也可以通过询问来找到你们坐在哪。

入栈比在堆上分配内存要快,因为(入栈时)分配器无需为存储新数据去搜索内存空间;其位置总是在栈顶。相比之下,在堆上分配内存则需要更多的工作,这是因为分配器必须首先找到一块足够存放数据的内存空间,并接着做一些记录为下一次分配做准备。

访问堆上的数据比访问栈上的数据慢,因为必须通过指针来访问。现代处理器在内存中跳转越少就越快(缓存)。继续类比,假设有一个服务员在餐厅里处理多个桌子的点菜。在一个桌子报完所有菜后再移动到下一个桌子是最有效率的。从桌子 A 听一个菜,接着桌子 B 听一个菜,然后再桌子 A,然后再桌子 B 这样的流程会更加缓慢。出于同样原因,处理器在处理的数据彼此较近的时候(比如在栈上)比较远的时候(比如可能在堆上)能更好的工作。

当你的代码调用一个函数时,传递给函数的值(包括可能指向堆上数据的指针)和函数的局部变量被压入栈中。当函数结束时,这些值被移出栈。

跟踪哪部分代码正在使用堆上的哪些数据,最大限度的减少堆上的重复数据的数量,以及清理堆上不再使用的数据确保不会耗尽空间,这些问题正是所有权系统要处理的。一旦理解了所有权,你就不需要经常考虑栈和堆了,不过明白了所有权的主要目的就是为了管理堆数据,能够帮助解释为什么所有权要以这种方式工作。

所有权规则

首先,让我们看一下所有权的规则。当我们通过举例说明时,请谨记这些规则:

  1. Rust 中的每一个值都有一个 所有者owner)。
  2. 值在任一时刻有且只有一个所有者。
  3. 当所有者(变量)离开作用域,这个值将被丢弃。

变量作用域

既然我们已经掌握了基本语法,将不会在之后的例子中包含 fn main() { 代码,所以如果你是一路跟过来的,必须手动将之后例子的代码放入一个 main 函数中。这样,例子将显得更加简明,使我们可以关注实际细节而不是样板代码。

在所有权的第一个例子中,我们看看一些变量的 作用域scope)。作用域是一个项(item)在程序中有效的范围。假设有这样一个变量:

#![allow(unused)]
fn main() {
let s = "hello";
}

变量 s 绑定到了一个字符串字面值,这个字符串值是硬编码进程序代码中的。这个变量从声明的点开始直到当前 作用域 结束时都是有效的。示例 4-1 中的注释标明了变量 s 在何处是有效的。

fn main() {
    {                      // s 在这里无效,它尚未声明
        let s = "hello";   // 从此处起,s 是有效的

        // 使用 s
    }                      // 此作用域已结束,s 不再有效
}

示例 4-1:一个变量和其有效的作用域

换句话说,这里有两个重要的时间点:

  • s 进入作用域 时,它就是有效的。
  • 这一直持续到它 离开作用域 为止。

目前为止,变量是否有效与作用域的关系跟其他编程语言是类似的。现在我们在此基础上介绍 String 类型。

String 类型

为了演示所有权的规则,我们需要一个比第三章 “数据类型” 中讲到的都要复杂的数据类型。前面介绍的类型都是已知大小的,可以存储在栈中,并且当离开作用域时被移出栈,如果代码的另一部分需要在不同的作用域中使用相同的值,可以快速简单地复制它们来创建一个新的独立实例。不过我们需要寻找一个存储在堆上的数据来探索 Rust 是如何知道该在何时清理数据的。

我们会专注于 String 与所有权相关的部分。这些方面也同样适用于标准库提供的或你自己创建的其他复杂数据类型。在第八章会更深入地讲解 String

我们已经见过字符串字面值,即被硬编码进程序里的字符串值。字符串字面值是很方便的,不过它们并不适合使用文本的每一种场景。原因之一就是它们是不可变的。另一个原因是并非所有字符串的值都能在编写代码时就知道:例如,要是想获取用户输入并存储该怎么办呢?为此,Rust 有第二个字符串类型,String。这个类型管理被分配到堆上的数据,所以能够存储在编译时未知大小的文本。可以使用 from 函数基于字符串字面值来创建 String,如下:

#![allow(unused)]
fn main() {
let s = String::from("hello");
}

这两个冒号 :: 是运算符,允许将特定的 from 函数置于 String 类型的命名空间(namespace)下,而不需要使用类似 string_from 这样的名字。在第五章的 “方法语法”(“Method Syntax”) 部分会着重讲解这个语法而且在第七章的 “路径用于引用模块树中的项” 中会讲到模块的命名空间。

可以 修改此类字符串:

fn main() {
    let mut s = String::from("hello");

    s.push_str(", world!"); // push_str() 在字符串后追加字面值

    println!("{}", s); // 将打印 `hello, world!`
}

那么这里有什么区别呢?为什么 String 可变而字面值却不行呢?区别在于两个类型对内存的处理上。

内存与分配

就字符串字面值来说,我们在编译时就知道其内容,所以文本被直接硬编码进最终的可执行文件中。这使得字符串字面值快速且高效。不过这些特性都只得益于字符串字面值的不可变性。不幸的是,我们不能为了每一个在编译时大小未知的文本而将一块内存放入二进制文件中,并且它的大小还可能随着程序运行而改变。

对于 String 类型,为了支持一个可变,可增长的文本片段,需要在堆上分配一块在编译时未知大小的内存来存放内容。这意味着:

  • 必须在运行时向内存分配器(memory allocator)请求内存。
  • 需要一个当我们处理完 String 时将内存返回给分配器的方法。

第一部分由我们完成:当调用 String::from 时,它的实现 (implementation) 请求其所需的内存。这在编程语言中是非常通用的。

然而,第二部分实现起来就各有区别了。在有 垃圾回收garbage collectorGC)的语言中,GC 记录并清除不再使用的内存,而我们并不需要关心它。在大部分没有 GC 的语言中,识别出不再使用的内存并调用代码显式释放就是我们的责任了,跟请求内存的时候一样。从历史的角度上说正确处理内存回收曾经是一个困难的编程问题。如果忘记回收了会浪费内存。如果过早回收了,将会出现无效变量。如果重复回收,这也是个 bug。我们需要精确的为一个 allocate 配对一个 free

Rust 采取了一个不同的策略:内存在拥有它的变量离开作用域后就被自动释放。下面是示例 4-1 中作用域例子的一个使用 String 而不是字符串字面值的版本:

fn main() {
    {
        let s = String::from("hello"); // 从此处起,s 是有效的

        // 使用 s
    }                                  // 此作用域已结束,
                                       // s 不再有效
}

这是一个将 String 需要的内存返回给分配器的很自然的位置:当 s 离开作用域的时候。当变量离开作用域,Rust 为我们调用一个特殊的函数。这个函数叫做 drop,在这里 String 的作者可以放置释放内存的代码。Rust 在结尾的 } 处自动调用 drop

注意:在 C++ 中,这种 item 在生命周期结束时释放资源的模式有时被称作 资源获取即初始化Resource Acquisition Is Initialization (RAII))。如果你使用过 RAII 模式的话应该对 Rust 的 drop 函数并不陌生。

这个模式对编写 Rust 代码的方式有着深远的影响。现在它看起来很简单,不过在更复杂的场景下代码的行为可能是不可预测的,比如当有多个变量使用在堆上分配的内存时。现在让我们探索一些这样的场景。

变量与数据交互的方式(一):移动

在 Rust 中,多个变量可以采取不同的方式与同一数据进行交互。让我们看看示例 4-2 中一个使用整型的例子。

fn main() {
    let x = 5;
    let y = x;
}

示例 4-2:将变量 x 的整数值赋给 y

我们大致可以猜到这在干什么:“将 5 绑定到 x;接着生成一个值 x 的拷贝并绑定到 y”。现在有了两个变量,xy,都等于 5。这也正是事实上发生了的,因为整数是有已知固定大小的简单值,所以这两个 5 被放入了栈中。

现在看看这个 String 版本:

fn main() {
    let s1 = String::from("hello");
    let s2 = s1;
}

这看起来与上面的代码非常类似,所以我们可能会假设它们的运行方式也是类似的:也就是说,第二行可能会生成一个 s1 的拷贝并绑定到 s2 上。不过,事实上并不完全是这样。

看看图 4-1 以了解 String 的底层会发生什么。String 由三部分组成,如图左侧所示:一个指向存放字符串内容内存的指针,一个长度,和一个容量。这一组数据存储在栈上。右侧则是堆上存放内容的内存部分。

Two tables: the first table contains the representation of s1 on the
stack, consisting of its length (5), capacity (5), and a pointer to the first
value in the second table. The second table contains the representation of the
string data on the heap, byte by byte.

图 4-1:将值 "hello" 绑定给 s1String 在内存中的表现形式

长度表示 String 的内容当前使用了多少字节的内存。容量是 String 从分配器总共获取了多少字节的内存。长度与容量的区别是很重要的,不过在当前上下文中并不重要,所以现在可以忽略容量。

当我们将 s1 赋值给 s2String 的数据被复制了,这意味着我们从栈上拷贝了它的指针、长度和容量。我们并没有复制指针指向的堆上数据。换句话说,内存中数据的表现如图 4-2 所示。

Three tables: tables s1 and s2 representing those strings on the
stack, respectively, and both pointing to the same string data on the heap.

图 4-2:变量 s2 的内存表现,它有一份 s1 指针、长度和容量的拷贝

这个表现形式看起来 并不像 图 4-3 中的那样,如果 Rust 也拷贝了堆上的数据,那么内存看起来就是这样的。如果 Rust 这么做了,那么操作 s2 = s1 在堆上数据比较大的时候会对运行时性能造成非常大的影响。

Four tables: two tables representing the stack data for s1 and s2,
and each points to its own copy of string data on the heap.

图 4-3:另一个 s2 = s1 时可能的内存表现,如果 Rust 同时也拷贝了堆上的数据的话

之前我们提到过当变量离开作用域后,Rust 自动调用 drop 函数并清理变量的堆内存。不过图 4-2 展示了两个数据指针指向了同一位置。这就有了一个问题:当 s2s1 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放double free)的错误,也是之前提到过的内存安全性 bug 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。

为了确保内存安全,在 let s2 = s1; 之后,Rust 认为 s1 不再有效,因此 Rust 不需要在 s1 离开作用域后清理任何东西。看看在 s2 被创建之后尝试使用 s1 会发生什么;这段代码不能运行:

fn main() {
    let s1 = String::from("hello");
    let s2 = s1;

    println!("{}, world!", s1);
}

你会得到一个类似如下的错误,因为 Rust 禁止你使用无效的引用。

$ cargo run
   Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0382]: borrow of moved value: `s1`
 --> src/main.rs:5:28
  |
2 |     let s1 = String::from("hello");
  |         -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
3 |     let s2 = s1;
  |              -- value moved here
4 |
5 |     println!("{}, world!", s1);
  |                            ^^ value borrowed here after move
  |
  = note: this error originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)

For more information about this error, try `rustc --explain E0382`.
error: could not compile `ownership` due to previous error

如果你在其他语言中听说过术语 浅拷贝shallow copy)和 深拷贝deep copy),那么拷贝指针、长度和容量而不拷贝数据可能听起来像浅拷贝。不过因为 Rust 同时使第一个变量无效了,这个操作被称为 移动move),而不是叫做浅拷贝。上面的例子可以解读为 s1移动 到了 s2 中。那么具体发生了什么,如图 4-4 所示。

Three tables: tables s1 and s2 representing those strings on the
stack, respectively, and both pointing to the same string data on the heap.
Table s1 is grayed out be-cause s1 is no longer valid; only s2 can be used to
access the heap data.

图 4-4:s1 无效之后的内存表现

这样就解决了我们的问题!因为只有 s2 是有效的,当其离开作用域,它就释放自己的内存,完毕。

另外,这里还隐含了一个设计选择:Rust 永远也不会自动创建数据的 “深拷贝”。因此,任何 自动 的复制都可以被认为是对运行时性能影响较小的。

变量与数据交互的方式(二):克隆

如果我们 确实 需要深度复制 String 中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做 clone 的通用函数。第五章会讨论方法语法,不过因为方法在很多语言中是一个常见功能,所以之前你可能已经见过了。

这是一个实际使用 clone 方法的例子:

fn main() {
    let s1 = String::from("hello");
    let s2 = s1.clone();

    println!("s1 = {}, s2 = {}", s1, s2);
}

这段代码能正常运行,并且明确产生图 4-3 中行为,这里堆上的数据 确实 被复制了。

当出现 clone 调用时,你知道一些特定的代码被执行而且这些代码可能相当消耗资源。你很容易察觉到一些不寻常的事情正在发生。

只在栈上的数据:拷贝

这里还有一个没有提到的小窍门。这些代码使用了整型并且是有效的,它们是示例 4-2 中的一部分:

fn main() {
    let x = 5;
    let y = x;

    println!("x = {}, y = {}", x, y);
}

但这段代码似乎与我们刚刚学到的内容相矛盾:没有调用 clone,不过 x 依然有效且没有被移动到 y 中。

原因是像整型这样的在编译时已知大小的类型被整个存储在栈上,所以拷贝其实际的值是快速的。这意味着没有理由在创建变量 y 后使 x 无效。换句话说,这里没有深浅拷贝的区别,所以这里调用 clone 并不会与通常的浅拷贝有什么不同,我们可以不用管它。

Rust 有一个叫做 Copy trait 的特殊注解,可以用在类似整型这样的存储在栈上的类型上(第十章将会详细讲解 trait)。如果一个类型实现了 Copy trait,那么一个旧的变量在将其赋值给其他变量后仍然可用。

Rust 不允许自身或其任何部分实现了 Drop trait 的类型使用 Copy trait。如果我们对其值离开作用域时需要特殊处理的类型使用 Copy 注解,将会出现一个编译时错误。要学习如何为你的类型添加 Copy 注解以实现该 trait,请阅读附录 C 中的 “可派生的 trait”

那么哪些类型实现了 Copy trait 呢?你可以查看给定类型的文档来确认,不过作为一个通用的规则,任何一组简单标量值的组合都可以实现 Copy,任何不需要分配内存或某种形式资源的类型都可以实现 Copy 。如下是一些 Copy 的类型:

  • 所有整数类型,比如 u32
  • 布尔类型,bool,它的值是 truefalse
  • 所有浮点数类型,比如 f64
  • 字符类型,char
  • 元组,当且仅当其包含的类型也都实现 Copy 的时候。比如,(i32, i32) 实现了 Copy,但 (i32, String) 就没有。

所有权与函数

将值传递给函数与给变量赋值的原理相似。向函数传递值可能会移动或者复制,就像赋值语句一样。示例 4-3 使用注释展示变量何时进入和离开作用域:

文件名:src/main.rs

fn main() {
    let s = String::from("hello");  // s 进入作用域

    takes_ownership(s);             // s 的值移动到函数里 ...
                                    // ... 所以到这里不再有效

    let x = 5;                      // x 进入作用域

    makes_copy(x);                  // x 应该移动函数里,
                                    // 但 i32 是 Copy 的,
                                    // 所以在后面可继续使用 x

} // 这里,x 先移出了作用域,然后是 s。但因为 s 的值已被移走,
  // 没有特殊之处

fn takes_ownership(some_string: String) { // some_string 进入作用域
    println!("{}", some_string);
} // 这里,some_string 移出作用域并调用 `drop` 方法。
  // 占用的内存被释放

fn makes_copy(some_integer: i32) { // some_integer 进入作用域
    println!("{}", some_integer);
} // 这里,some_integer 移出作用域。没有特殊之处

示例 4-3:带有所有权和作用域注释的函数

当尝试在调用 takes_ownership 后使用 s 时,Rust 会抛出一个编译时错误。这些静态检查使我们免于犯错。试试在 main 函数中添加使用 sx 的代码来看看哪里能使用它们,以及所有权规则会在哪里阻止我们这么做。

返回值与作用域

返回值也可以转移所有权。示例 4-4 展示了一个返回了某些值的示例,与示例 4-3 一样带有类似的注释。

文件名:src/main.rs

fn main() {
    let s1 = gives_ownership();         // gives_ownership 将返回值
                                        // 转移给 s1

    let s2 = String::from("hello");     // s2 进入作用域

    let s3 = takes_and_gives_back(s2);  // s2 被移动到
                                        // takes_and_gives_back 中,
                                        // 它也将返回值移给 s3
} // 这里,s3 移出作用域并被丢弃。s2 也移出作用域,但已被移走,
  // 所以什么也不会发生。s1 离开作用域并被丢弃

fn gives_ownership() -> String {             // gives_ownership 会将
                                             // 返回值移动给
                                             // 调用它的函数

    let some_string = String::from("yours"); // some_string 进入作用域。

    some_string                              // 返回 some_string 
                                             // 并移出给调用的函数
                                             // 
}

// takes_and_gives_back 将传入字符串并返回该值
fn takes_and_gives_back(a_string: String) -> String { // a_string 进入作用域
                                                      // 

    a_string  // 返回 a_string 并移出给调用的函数
}

示例 4-4: 转移返回值的所有权

变量的所有权总是遵循相同的模式:将值赋给另一个变量时移动它。当持有堆中数据值的变量离开作用域时,其值将通过 drop 被清理掉,除非数据被移动为另一个变量所有。

虽然这样是可以的,但是在每一个函数中都获取所有权并接着返回所有权有些啰嗦。如果我们想要函数使用一个值但不获取所有权该怎么办呢?如果我们还要接着使用它的话,每次都传进去再返回来就有点烦人了,除此之外,我们也可能想返回函数体中产生的一些数据。

我们可以使用元组来返回多个值,如示例 4-5 所示。

文件名:src/main.rs

fn main() {
    let s1 = String::from("hello");

    let (s2, len) = calculate_length(s1);

    println!("The length of '{}' is {}.", s2, len);
}

fn calculate_length(s: String) -> (String, usize) {
    let length = s.len(); // len() 返回字符串的长度

    (s, length)
}

示例 4-5: 返回参数的所有权

但是这未免有些形式主义,而且这种场景应该很常见。幸运的是,Rust 对此提供了一个不用获取所有权就可以使用值的功能,叫做 引用references)。

引用与借用

ch04-02-references-and-borrowing.md
commit 3d51f70c78162faaebcab0da0de2ddd333e7a8ed

示例 4-5 中的元组代码有这样一个问题:我们必须将 String 返回给调用函数,以便在调用 calculate_length 后仍能使用 String,因为 String 被移动到了 calculate_length 内。相反我们可以提供一个 String 值的引用(reference)。引用reference)像一个指针,因为它是一个地址,我们可以由此访问储存于该地址的属于其他变量的数据。 与指针不同,引用确保指向某个特定类型的有效值。

下面是如何定义并使用一个(新的)calculate_length 函数,它以一个对象的引用作为参数而不是获取值的所有权:

文件名:src/main.rs

fn main() {
    let s1 = String::from("hello");

    let len = calculate_length(&s1);

    println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
    s.len()
}

首先,注意变量声明和函数返回值中的所有元组代码都消失了。其次,注意我们传递 &s1calculate_length,同时在函数定义中,我们获取 &String 而不是 String。这些 & 符号就是 引用,它们允许你使用值但不获取其所有权。图 4-5 展示了一张示意图。

Three tables: the table for s contains only a pointer to the table
for s1. The table for s1 contains the stack data for s1 and points to the
string data on the heap.

图 4-5:&String s 指向 String s1 示意图

注意:与使用 & 引用相反的操作是 解引用dereferencing),它使用解引用运算符,*。我们将会在第八章遇到一些解引用运算符,并在第十五章详细讨论解引用。

仔细看看这个函数调用:

fn main() {
    let s1 = String::from("hello");

    let len = calculate_length(&s1);

    println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
    s.len()
}

&s1 语法让我们创建一个 指向s1 的引用,但是并不拥有它。因为并不拥有这个值,所以当引用停止使用时,它所指向的值也不会被丢弃。

同理,函数签名使用 & 来表明参数 s 的类型是一个引用。让我们增加一些解释性的注释:

fn main() {
    let s1 = String::from("hello");

    let len = calculate_length(&s1);

    println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize { // s 是 String 的引用
    s.len()
} // 这里,s 离开了作用域。但因为它并不拥有引用值的所有权,
  // 所以什么也不会发生

变量 s 有效的作用域与函数参数的作用域一样,不过当 s 停止使用时并不丢弃引用指向的数据,因为 s 并没有所有权。当函数使用引用而不是实际值作为参数,无需返回值来交还所有权,因为就不曾拥有所有权。

我们将创建一个引用的行为称为 借用borrowing)。正如现实生活中,如果一个人拥有某样东西,你可以从他那里借来。当你使用完毕,必须还回去。我们并不拥有它。

如果我们尝试修改借用的变量呢?尝试示例 4-6 中的代码。剧透:这行不通!

文件名:src/main.rs

fn main() {
    let s = String::from("hello");

    change(&s);
}

fn change(some_string: &String) {
    some_string.push_str(", world");
}

示例 4-6:尝试修改借用的值

这里是错误:

$ cargo run
   Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0596]: cannot borrow `*some_string` as mutable, as it is behind a `&` reference
 --> src/main.rs:8:5
  |
7 | fn change(some_string: &String) {
  |                        ------- help: consider changing this to be a mutable reference: `&mut String`
8 |     some_string.push_str(", world");
  |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `some_string` is a `&` reference, so the data it refers to cannot be borrowed as mutable

For more information about this error, try `rustc --explain E0596`.
error: could not compile `ownership` due to previous error

正如变量默认是不可变的,引用也一样。(默认)不允许修改引用的值。

可变引用

我们通过一个小调整就能修复示例 4-6 代码中的错误,允许我们修改一个借用的值,这就是 可变引用mutable reference):

文件名:src/main.rs

fn main() {
    let mut s = String::from("hello");

    change(&mut s);
}

fn change(some_string: &mut String) {
    some_string.push_str(", world");
}

首先,我们必须将 s 改为 mut。然后在调用 change 函数的地方创建一个可变引用 &mut s,并更新函数签名以接受一个可变引用 some_string: &mut String。这就非常清楚地表明,change 函数将改变它所借用的值。

可变引用有一个很大的限制:如果你有一个对该变量的可变引用,你就不能再创建对该变量的引用。这些尝试创建两个 s 的可变引用的代码会失败:

文件名:src/main.rs

fn main() {
    let mut s = String::from("hello");

    let r1 = &mut s;
    let r2 = &mut s;

    println!("{}, {}", r1, r2);
}

错误如下:

$ cargo run
   Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0499]: cannot borrow `s` as mutable more than once at a time
 --> src/main.rs:5:14
  |
4 |     let r1 = &mut s;
  |              ------ first mutable borrow occurs here
5 |     let r2 = &mut s;
  |              ^^^^^^ second mutable borrow occurs here
6 |
7 |     println!("{}, {}", r1, r2);
  |                        -- first borrow later used here

For more information about this error, try `rustc --explain E0499`.
error: could not compile `ownership` due to previous error

这个报错说这段代码是无效的,因为我们不能在同一时间多次将 s 作为可变变量借用。第一个可变的借入在 r1 中,并且必须持续到在 println! 中使用它,但是在那个可变引用的创建和它的使用之间,我们又尝试在 r2 中创建另一个可变引用,该引用借用与 r1 相同的数据。

这一限制以一种非常小心谨慎的方式允许可变性,防止同一时间对同一数据存在多个可变引用。新 Rustacean 们经常难以适应这一点,因为大部分语言中变量任何时候都是可变的。这个限制的好处是 Rust 可以在编译时就避免数据竞争。数据竞争data race)类似于竞态条件,它可由这三个行为造成:

  • 两个或更多指针同时访问同一数据。
  • 至少有一个指针被用来写入数据。
  • 没有同步数据访问的机制。

数据竞争会导致未定义行为,难以在运行时追踪,并且难以诊断和修复;Rust 避免了这种情况的发生,因为它甚至不会编译存在数据竞争的代码!

一如既往,可以使用大括号来创建一个新的作用域,以允许拥有多个可变引用,只是不能 同时 拥有:

fn main() {
    let mut s = String::from("hello");

    {
        let r1 = &mut s;
    } // r1 在这里离开了作用域,所以我们完全可以创建一个新的引用

    let r2 = &mut s;
}

Rust 在同时使用可变与不可变引用时也采用的类似的规则。这些代码会导致一个错误:

fn main() {
    let mut s = String::from("hello");

    let r1 = &s; // 没问题
    let r2 = &s; // 没问题
    let r3 = &mut s; // 大问题

    println!("{}, {}, and {}", r1, r2, r3);
}

错误如下:

$ cargo run
   Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
 --> src/main.rs:6:14
  |
4 |     let r1 = &s; // no problem
  |              -- immutable borrow occurs here
5 |     let r2 = &s; // no problem
6 |     let r3 = &mut s; // BIG PROBLEM
  |              ^^^^^^ mutable borrow occurs here
7 |
8 |     println!("{}, {}, and {}", r1, r2, r3);
  |                                -- immutable borrow later used here

For more information about this error, try `rustc --explain E0502`.
error: could not compile `ownership` due to previous error

哇哦!我们 不能在拥有不可变引用的同时拥有可变引用。

不可变引用的用户可不希望在他们的眼皮底下值就被意外的改变了!然而,多个不可变引用是可以的,因为没有哪个只能读取数据的人有能力影响其他人读取到的数据。

注意一个引用的作用域从声明的地方开始一直持续到最后一次使用为止。例如,因为最后一次使用不可变引用(println!),发生在声明可变引用之前,所以如下代码是可以编译的:

fn main() {
    let mut s = String::from("hello");

    let r1 = &s; // 没问题
    let r2 = &s; // 没问题
    println!("{} and {}", r1, r2);
    // 此位置之后 r1 和 r2 不再使用

    let r3 = &mut s; // 没问题
    println!("{}", r3);
}

不可变引用 r1r2 的作用域在 println! 最后一次使用之后结束,这也是创建可变引用 r3 的地方。它们的作用域没有重叠,所以代码是可以编译的。编译器可以在作用域结束之前判断不再使用的引用。

尽管这些错误有时使人沮丧,但请牢记这是 Rust 编译器在提前指出一个潜在的 bug(在编译时而不是在运行时)并精准显示问题所在。这样你就不必去跟踪为何数据并不是你想象中的那样。

悬垂引用(Dangling References)

在具有指针的语言中,很容易通过释放内存时保留指向它的指针而错误地生成一个 悬垂指针dangling pointer),所谓悬垂指针是其指向的内存可能已经被分配给其它持有者。相比之下,在 Rust 中编译器确保引用永远也不会变成悬垂状态:当你拥有一些数据的引用,编译器确保数据不会在其引用之前离开作用域。

让我们尝试创建一个悬垂引用,Rust 会通过一个编译时错误来避免:

文件名:src/main.rs

fn main() {
    let reference_to_nothing = dangle();
}

fn dangle() -> &String {
    let s = String::from("hello");

    &s
}

这里是错误:

$ cargo run
   Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0106]: missing lifetime specifier
 --> src/main.rs:5:16
  |
5 | fn dangle() -> &String {
  |                ^ expected named lifetime parameter
  |
  = help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime
  |
5 | fn dangle() -> &'static String {
  |                 +++++++

For more information about this error, try `rustc --explain E0106`.
error: could not compile `ownership` due to previous error

错误信息引用了一个我们还未介绍的功能:生命周期(lifetimes)。第十章会详细介绍生命周期。不过,如果你不理会生命周期部分,错误信息中确实包含了为什么这段代码有问题的关键信息:

this function's return type contains a borrowed value, but there is no value
for it to be borrowed from

让我们仔细看看我们的 dangle 代码的每一步到底发生了什么:

文件名:src/main.rs

fn main() {
    let reference_to_nothing = dangle();
}

fn dangle() -> &String { // dangle 返回一个字符串的引用

    let s = String::from("hello"); // s 是一个新字符串

    &s // 返回字符串 s 的引用
} // 这里 s 离开作用域并被丢弃。其内存被释放。
  // 危险!

因为 s 是在 dangle 函数内创建的,当 dangle 的代码执行完毕后,s 将被释放。不过我们尝试返回它的引用。这意味着这个引用会指向一个无效的 String,这可不对!Rust 不会允许我们这么做。

这里的解决方法是直接返回 String

fn main() {
    let string = no_dangle();
}

fn no_dangle() -> String {
    let s = String::from("hello");

    s
}

这样就没有任何错误了。所有权被移动出去,所以没有值被释放。

引用的规则

让我们概括一下之前对引用的讨论:

  • 在任意给定时间,要么 只能有一个可变引用,要么 只能有多个不可变引用。
  • 引用必须总是有效的。

接下来,我们来看看另一种不同类型的引用:slice。

Slice 类型

ch04-03-slices.md
commit 3d51f70c78162faaebcab0da0de2ddd333e7a8ed

slice 允许你引用集合中一段连续的元素序列,而不用引用整个集合。slice 是一类引用,所以它没有所有权。

这里有一个编程小习题:编写一个函数,该函数接收一个用空格分隔单词的字符串,并返回在该字符串中找到的第一个单词。如果函数在该字符串中并未找到空格,则整个字符串就是一个单词,所以应该返回整个字符串。

让我们推敲下如何不用 slice 编写这个函数的签名,来理解 slice 能解决的问题:

fn first_word(s: &String) -> ?

first_word 函数有一个参数 &String。因为我们不需要所有权,所以这没有问题。不过应该返回什么呢?我们并没有一个真正获取 部分 字符串的办法。不过,我们可以返回单词结尾的索引,结尾由一个空格表示。试试如示例 4-7 中的代码。

文件名:src/main.rs

fn first_word(s: &String) -> usize {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return i;
        }
    }

    s.len()
}

fn main() {}

示例 4-7:first_word 函数返回 String 参数的一个字节索引值

因为需要逐个元素的检查 String 中的值是否为空格,需要用 as_bytes 方法将 String 转化为字节数组。

fn first_word(s: &String) -> usize {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return i;
        }
    }

    s.len()
}

fn main() {}

接下来,使用 iter 方法在字节数组上创建一个迭代器:

fn first_word(s: &String) -> usize {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return i;
        }
    }

    s.len()
}

fn main() {}

我们将在第十三章详细讨论迭代器。现在,只需知道 iter 方法返回集合中的每一个元素,而 enumerate 包装了 iter 的结果,将这些元素作为元组的一部分来返回。enumerate 返回的元组中,第一个元素是索引,第二个元素是集合中元素的引用。这比我们自己计算索引要方便一些。

因为 enumerate 方法返回一个元组,我们可以使用模式来解构,我们将在第六章中进一步讨论有关模式的问题。所以在 for 循环中,我们指定了一个模式,其中元组中的 i 是索引而元组中的 &item 是单个字节。因为我们从 .iter().enumerate() 中获取了集合元素的引用,所以模式中使用了 &

for 循环中,我们通过字节的字面值语法来寻找代表空格的字节。如果找到了一个空格,返回它的位置。否则,使用 s.len() 返回字符串的长度:

fn first_word(s: &String) -> usize {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return i;
        }
    }

    s.len()
}

fn main() {}

现在有了一个找到字符串中第一个单词结尾索引的方法,不过这有一个问题。我们返回了一个独立的 usize,不过它只在 &String 的上下文中才是一个有意义的数字。换句话说,因为它是一个与 String 相分离的值,无法保证将来它仍然有效。考虑一下示例 4-8 中使用了示例 4-7 中 first_word 函数的程序。

文件名:src/main.rs

fn first_word(s: &String) -> usize {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return i;
        }
    }

    s.len()
}

fn main() {
    let mut s = String::from("hello world");

    let word = first_word(&s); // word 的值为 5

    s.clear(); // 这清空了字符串,使其等于 ""

    // word 在此处的值仍然是 5,
    // 但是没有更多的字符串让我们可以有效地应用数值 5。word 的值现在完全无效!
}

示例 4-8:存储 first_word 函数调用的返回值并接着改变 String 的内容

这个程序编译时没有任何错误,而且在调用 s.clear() 之后使用 word 也不会出错。因为 words 状态完全没有联系,所以 word 仍然包含值 5。可以尝试用值 5 来提取变量 s 的第一个单词,不过这是有 bug 的,因为在我们将 5 保存到 word 之后 s 的内容已经改变。

我们不得不时刻担心 word 的索引与 s 中的数据不再同步,这很啰嗦且易出错!如果编写这么一个 second_word 函数的话,管理索引这件事将更加容易出问题。它的签名看起来像这样:

fn second_word(s: &String) -> (usize, usize) {

现在我们要跟踪一个开始索引 一个结尾索引,同时有了更多从数据的某个特定状态计算而来的值,但都完全没有与这个状态相关联。现在有三个飘忽不定的不相关变量需要保持同步。

幸运的是,Rust 为这个问题提供了一个解决方法:字符串 slice。

字符串 slice

字符串 slicestring slice)是 String 中一部分值的引用,它看起来像这样:

fn main() {
    let s = String::from("hello world");

    let hello = &s[0..5];
    let world = &s[6..11];
}

不同于整个 String 的引用,hello 是一个部分 String 的引用,由一个额外的 [0..5] 部分指定。可以使用一个由中括号中的 [starting_index..ending_index] 指定的 range 创建一个 slice,其中 starting_index 是 slice 的第一个位置,ending_index 则是 slice 最后一个位置的后一个值。在其内部,slice 的数据结构存储了 slice 的开始位置和长度,长度对应于 ending_index 减去 starting_index 的值。所以对于 let world = &s[6..11]; 的情况,world 将是一个包含指向 s 索引 6 的指针和长度值 5 的 slice。

图 4-6 展示了一个图例。

Three tables: a table representing the stack data of s, which points
to the byte at index 0 in a table of the string data "hello world" on
the heap. The third table rep-resents the stack data of the slice world, which
has a length value of 5 and points to byte 6 of the heap data table.

图 4-6:引用了部分 String 的字符串 slice

对于 Rust 的 .. range 语法,如果想要从索引 0 开始,可以不写两个点号之前的值。换句话说,如下两个语句是相同的:

#![allow(unused)]
fn main() {
let s = String::from("hello");

let slice = &s[0..2];
let slice = &s[..2];
}

依此类推,如果 slice 包含 String 的最后一个字节,也可以舍弃尾部的数字。这意味着如下也是相同的:

#![allow(unused)]
fn main() {
let s = String::from("hello");

let len = s.len();

let slice = &s[3..len];
let slice = &s[3..];
}

也可以同时舍弃这两个值来获取整个字符串的 slice。所以如下亦是相同的:

#![allow(unused)]
fn main() {
let s = String::from("hello");

let len = s.len();

let slice = &s[0..len];
let slice = &s[..];
}

注意:字符串 slice range 的索引必须位于有效的 UTF-8 字符边界内,如果尝试从一个多字节字符的中间位置创建字符串 slice,则程序将会因错误而退出。出于介绍字符串 slice 的目的,本部分假设只使用 ASCII 字符集;第八章的 “使用字符串储存 UTF-8 编码的文本” 部分会更加全面的讨论 UTF-8 处理问题。

在记住所有这些知识后,让我们重写 first_word 来返回一个 slice。“字符串 slice” 的类型声明写作 &str

文件名:src/main.rs

fn first_word(s: &String) -> &str {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return &s[0..i];
        }
    }

    &s[..]
}

fn main() {}

我们使用跟示例 4-7 相同的方式获取单词结尾的索引,通过寻找第一个出现的空格。当找到一个空格,我们返回一个字符串 slice,它使用字符串的开始和空格的索引作为开始和结束的索引。

现在当调用 first_word 时,会返回与底层数据关联的单个值。这个值由一个 slice 开始位置的引用和 slice 中元素的数量组成。

second_word 函数也可以改为返回一个 slice:

fn second_word(s: &String) -> &str {

现在我们有了一个不易混淆且直观的 API 了,因为编译器会确保指向 String 的引用持续有效。还记得示例 4-8 程序中,那个当我们获取第一个单词结尾的索引后,接着就清除了字符串导致索引就无效的 bug 吗?那些代码在逻辑上是不正确的,但却没有显示任何直接的错误。问题会在之后尝试对空字符串使用第一个单词的索引时出现。slice 就不可能出现这种 bug 并让我们更早的知道出问题了。使用 slice 版本的 first_word 会抛出一个编译时错误:

文件名:src/main.rs

fn first_word(s: &String) -> &str {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return &s[0..i];
        }
    }

    &s[..]
}

fn main() {
    let mut s = String::from("hello world");

    let word = first_word(&s);

    s.clear(); // 错误!

    println!("the first word is: {}", word);
}

这里是编译错误:

$ cargo run
   Compiling ownership v0.1.0 (file:///projects/ownership)
error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
  --> src/main.rs:18:5
   |
16 |     let word = first_word(&s);
   |                           -- immutable borrow occurs here
17 |
18 |     s.clear(); // error!
   |     ^^^^^^^^^ mutable borrow occurs here
19 |
20 |     println!("the first word is: {}", word);
   |                                       ---- immutable borrow later used here

For more information about this error, try `rustc --explain E0502`.
error: could not compile `ownership` due to previous error

回忆一下借用规则,当拥有某值的不可变引用时,就不能再获取一个可变引用。因为 clear 需要清空 String,它尝试获取一个可变引用。在调用 clear 之后的 println! 使用了 word 中的引用,所以这个不可变的引用在此时必须仍然有效。Rust 不允许 clear 中的可变引用和 word 中的不可变引用同时存在,因此编译失败。Rust 不仅使得我们的 API 简单易用,也在编译时就消除了一整类的错误!

字符串字面值就是 slice

还记得我们讲到过字符串字面值被储存在二进制文件中吗?现在知道 slice 了,我们就可以正确地理解字符串字面值了:

#![allow(unused)]
fn main() {
let s = "Hello, world!";
}

这里 s 的类型是 &str:它是一个指向二进制程序特定位置的 slice。这也就是为什么字符串字面值是不可变的;&str 是一个不可变引用。

字符串 slice 作为参数

在知道了能够获取字面值和 String 的 slice 后,我们对 first_word 做了改进,这是它的签名:

fn first_word(s: &String) -> &str {

而更有经验的 Rustacean 会编写出示例 4-9 中的签名,因为它使得可以对 &String 值和 &str 值使用相同的函数:

fn first_word(s: &str) -> &str {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return &s[0..i];
        }
    }

    &s[..]
}

fn main() {
    let my_string = String::from("hello world");

    // `first_word` 适用于 `String`(的 slice),部分或全部
    let word = first_word(&my_string[0..6]);
    let word = first_word(&my_string[..]);
    // `first_word` 也适用于 `String` 的引用,
    // 这等价于整个 `String` 的 slice
    let word = first_word(&my_string);

    let my_string_literal = "hello world";

    // `first_word` 适用于字符串字面值,部分或全部
    let word = first_word(&my_string_literal[0..6]);
    let word = first_word(&my_string_literal[..]);

    // 因为字符串字面值已经 **是** 字符串 slice 了,
    // 这也是适用的,无需 slice 语法!
    let word = first_word(my_string_literal);
}

示例 4-9: 通过将 s 参数的类型改为字符串 slice 来改进 first_word 函数

如果有一个字符串 slice,可以直接传递它。如果有一个 String,则可以传递整个 String 的 slice 或对 String 的引用。这种灵活性利用了 deref coercions 的优势,这个特性我们将在“函数和方法的隐式 Deref 强制转换”章节中介绍。定义一个获取字符串 slice 而不是 String 引用的函数使得我们的 API 更加通用并且不会丢失任何功能:

文件名:src/main.rs

fn first_word(s: &str) -> &str {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return &s[0..i];
        }
    }

    &s[..]
}

fn main() {
    let my_string = String::from("hello world");

    // `first_word` 适用于 `String`(的 slice),部分或全部
    let word = first_word(&my_string[0..6]);
    let word = first_word(&my_string[..]);
    // `first_word` 也适用于 `String` 的引用,
    // 这等价于整个 `String` 的 slice
    let word = first_word(&my_string);

    let my_string_literal = "hello world";

    // `first_word` 适用于字符串字面值,部分或全部
    let word = first_word(&my_string_literal[0..6]);
    let word = first_word(&my_string_literal[..]);

    // 因为字符串字面值已经 **是** 字符串 slice 了,
    // 这也是适用的,无需 slice 语法!
    let word = first_word(my_string_literal);
}

其他类型的 slice

字符串 slice,正如你想象的那样,是针对字符串的。不过也有更通用的 slice 类型。考虑一下这个数组:

#![allow(unused)]
fn main() {
let a = [1, 2, 3, 4, 5];
}

就跟我们想要获取字符串的一部分那样,我们也会想要引用数组的一部分。我们可以这样做:

#![allow(unused)]
fn main() {
let a = [1, 2, 3, 4, 5];

let slice = &a[1..3];

assert_eq!(slice, &[2, 3]);
}

这个 slice 的类型是 &[i32]。它跟字符串 slice 的工作方式一样,通过存储第一个集合元素的引用和一个集合总长度。你可以对其他所有集合使用这类 slice。第八章讲到 vector 时会详细讨论这些集合。

总结

所有权、借用和 slice 这些概念让 Rust 程序在编译时确保内存安全。Rust 语言提供了跟其他系统编程语言相同的方式来控制你使用的内存,但拥有数据所有者在离开作用域后自动清除其数据的功能意味着你无须额外编写和调试相关的控制代码。

所有权系统影响了 Rust 中很多其他部分的工作方式,所以我们还会继续讲到这些概念,这将贯穿本书的余下内容。让我们开始第五章,来看看如何将多份数据组合进一个 struct 中。

使用结构体组织相关联的数据

ch05-00-structs.md
commit 8612c4a5801b61f8d2e952f8bbbb444692ff1ec2

struct,或者 structure,是一个自定义数据类型,允许你包装和命名多个相关的值,从而形成一个有意义的组合。如果你熟悉一门面向对象语言,struct 就像对象中的数据属性。在本章中,我们会对元组和结构体进行比较和对比。

我们还将演示如何定义和实例化结构体,并讨论如何定义关联函数,特别是被称为 方法 的那种关联函数,以指定与结构体类型相关的行为。你可以在程序中基于结构体和枚举(enum)(在第六章介绍)创建新类型,以充分利用 Rust 的编译时类型检查。

结构体的定义和实例化

ch05-01-defining-structs.md
commit a371f82b0916cf21de2d56bd386ca5d72f7699b0

结构体和我们在“元组类型”部分论过的元组类似,它们都包含多个相关的值。和元组一样,结构体的每一部分可以是不同类型。但不同于元组,结构体需要命名各部分数据以便能清楚的表明其值的意义。由于有了这些名字,结构体比元组更灵活:不需要依赖顺序来指定或访问实例中的值。

定义结构体,需要使用 struct 关键字并为整个结构体提供一个名字。结构体的名字需要描述它所组合的数据的意义。接着,在大括号中,定义每一部分数据的名字和类型,我们称为 字段field)。例如,示例 5-1 展示了一个存储用户账号信息的结构体:

文件名:src/main.rs

struct User {
    active: bool,
    username: String,
    email: String,
    sign_in_count: u64,
}

fn main() {}

示例 5-1:User 结构体定义

一旦定义了结构体后,为了使用它,通过为每个字段指定具体值来创建这个结构体的 实例。创建一个实例需要以结构体的名字开头,接着在大括号中使用 key: value 键 - 值对的形式提供字段,其中 key 是字段的名字,value 是需要存储在字段中的数据值。实例中字段的顺序不需要和它们在结构体中声明的顺序一致。换句话说,结构体的定义就像一个类型的通用模板,而实例则会在这个模板中放入特定数据来创建这个类型的值。例如,可以像示例 5-2 这样来声明一个特定的用户:

文件名:src/main.rs

struct User {
    active: bool,
    username: String,
    email: String,
    sign_in_count: u64,
}

fn main() {
    let user1 = User {
        active: true,
        username: String::from("someusername123"),
        email: String::from("someone@example.com"),
        sign_in_count: 1,
    };
}

示例 5-2:创建 User 结构体的实例

为了从结构体中获取某个特定的值,可以使用点号。举个例子,想要用户的邮箱地址,可以用 user1.email。如果结构体的实例是可变的,我们可以使用点号并为对应的字段赋值。示例 5-3 展示了如何改变一个可变的 User 实例中 email 字段的值:

文件名:src/main.rs

struct User {
    active: bool,
    username: String,
    email: String,
    sign_in_count: u64,
}

fn main() {
    let mut user1 = User {
        active: true,
        username: String::from("someusername123"),
        email: String::from("someone@example.com"),
        sign_in_count: 1,
    };

    user1.email = String::from("anotheremail@example.com");
}

示例 5-3:改变 User 实例 email 字段的值

注意整个实例必须是可变的;Rust 并不允许只将某个字段标记为可变。另外需要注意同其他任何表达式一样,我们可以在函数体的最后一个表达式中构造一个结构体的新实例,来隐式地返回这个实例。

示例 5-4 显示了一个 build_user 函数,它返回一个带有给定的 email 和用户名的 User 结构体实例。active 字段的值为 true,并且 sign_in_count 的值为 1

文件名:src/main.rs

struct User {
    active: bool,
    username: String,
    email: String,
    sign_in_count: u64,
}

fn build_user(email: String, username: String) -> User {
    User {
        active: true,
        username: username,
        email: email,
        sign_in_count: 1,
    }
}

fn main() {
    let user1 = build_user(
        String::from("someone@example.com"),
        String::from("someusername123"),
    );
}

示例 5-4:build_user 函数获取 email 和用户名并返回 User 实例

为函数参数起与结构体字段相同的名字是可以理解的,但是不得不重复 emailusername 字段名称与变量有些啰嗦。如果结构体有更多字段,重复每个名称就更加烦人了。幸运的是,有一个方便的简写语法!

使用字段初始化简写语法

因为示例 5-4 中的参数名与字段名都完全相同,我们可以使用 字段初始化简写语法field init shorthand)来重写 build_user,这样其行为与之前完全相同,不过无需重复 usernameemail 了,如示例 5-5 所示。

文件名:src/main.rs

struct User {
    active: bool,
    username: String,
    email: String,
    sign_in_count: u64,
}

fn build_user(email: String, username: String) -> User {
    User {
        active: true,
        username,
        email,
        sign_in_count: 1,
    }
}

fn main() {
    let user1 = build_user(
        String::from("someone@example.com"),
        String::from("someusername123"),
    );
}

示例 5-5:build_user 函数使用了字段初始化简写语法,因为 usernameemail 参数与结构体字段同名

这里我们创建了一个新的 User 结构体实例,它有一个叫做 email 的字段。我们想要将 email 字段的值设置为 build_user 函数 email 参数的值。因为 email 字段与 email 参数有着相同的名称,则只需编写 email 而不是 email: email

使用结构体更新语法从其他实例创建实例

使用旧实例的大部分值但改变其部分值来创建一个新的结构体实例通常是很有用的。这可以通过 结构体更新语法struct update syntax)实现。

首先,示例 5-6 展示了不使用更新语法时,如何在 user2 中创建一个新 User 实例。我们为 email 设置了新的值,其他值则使用了实例 5-2 中创建的 user1 中的同名值:

文件名:src/main.rs

struct User {
    active: bool,
    username: String,
    email: String,
    sign_in_count: u64,
}

fn main() {
    // --snip--

    let user1 = User {
        email: String::from("someone@example.com"),
        username: String::from("someusername123"),
        active: true,
        sign_in_count: 1,
    };

    let user2 = User {
        active: user1.active,
        username: user1.username,
        email: String::from("another@example.com"),
        sign_in_count: user1.sign_in_count,
    };
}

示例 5-6:使用 user1 中的一个值创建一个新的 User 实例

使用结构体更新语法,我们可以通过更少的代码来达到相同的效果,如示例 5-7 所示。.. 语法指定了剩余未显式设置值的字段应有与给定实例对应字段相同的值。

文件名:src/main.rs

struct User {
    active: bool,
    username: String,
    email: String,
    sign_in_count: u64,
}

fn main() {
    // --snip--

    let user1 = User {
        email: String::from("someone@example.com"),
        username: String::from("someusername123"),
        active: true,
        sign_in_count: 1,
    };

    let user2 = User {
        email: String::from("another@example.com"),
        ..user1
    };
}

示例 5-7:使用结构体更新语法为一个 User 实例设置一个新的 email 值,不过其余值来自 user1 变量中实例的字段

示例 5-7 中的代码也在 user2 中创建了一个新实例,但该实例中 email 字段的值与 user1 不同,而 usernameactivesign_in_count 字段的值与 user1 相同。..user1 必须放在最后,以指定其余的字段应从 user1 的相应字段中获取其值,但我们可以选择以任何顺序为任意字段指定值,而不用考虑结构体定义中字段的顺序。

请注意,结构更新语法就像带有 = 的赋值,因为它移动了数据,就像我们在“变量与数据交互的方式(一):移动”部分讲到的一样。在这个例子中,总体上说我们在创建 user2 后不能就再使用 user1 了,因为 user1username 字段中的 String 被移到 user2 中。如果我们给 user2emailusername 都赋予新的 String 值,从而只使用 user1activesign_in_count 值,那么 user1 在创建 user2 后仍然有效。activesign_in_count 的类型是实现 Copy trait 的类型,所以我们在“变量与数据交互的方式(二):克隆” 部分讨论的行为同样适用。

使用没有命名字段的元组结构体来创建不同的类型

也可以定义与元组(在第三章讨论过)类似的结构体,称为 元组结构体tuple structs)。元组结构体有着结构体名称提供的含义,但没有具体的字段名,只有字段的类型。当你想给整个元组取一个名字,并使元组成为与其他元组不同的类型时,元组结构体是很有用的,这时像常规结构体那样为每个字段命名就显得多余和形式化了。

要定义元组结构体,以 struct 关键字和结构体名开头并后跟元组中的类型。例如,下面是两个分别叫做 ColorPoint 元组结构体的定义和用法:

文件名:src/main.rs

struct Color(i32, i32, i32);
struct Point(i32, i32, i32);

fn main() {
    let black = Color(0, 0, 0);
    let origin = Point(0, 0, 0);
}

注意 blackorigin 值的类型不同,因为它们是不同的元组结构体的实例。你定义的每一个结构体有其自己的类型,即使结构体中的字段可能有着相同的类型。例如,一个获取 Color 类型参数的函数不能接受 Point 作为参数,即便这两个类型都由三个 i32 值组成。在其他方面,元组结构体实例类似于元组,你可以将它们解构为单独的部分,也可以使用 . 后跟索引来访问单独的值,等等。

没有任何字段的类单元结构体

我们也可以定义一个没有任何字段的结构体!它们被称为 类单元结构体unit-like structs)因为它们类似于 (),即“元组类型”一节中提到的 unit 类型。类单元结构体常常在你想要在某个类型上实现 trait 但不需要在类型中存储数据的时候发挥作用。我们将在第十章介绍 trait。下面是一个声明和实例化一个名为 AlwaysEqual 的 unit 结构的例子。

文件名:src/main.rs

struct AlwaysEqual;

fn main() {
    let subject = AlwaysEqual;
}

为了定义 AlwaysEqual,我们使用 struct 关键字,接着是我们想要的名称,然后是一个分号。不需要花括号或圆括号!然后,我们可以以类似的方式在 subject 变量中创建 AlwaysEqual 的实例:只需使用我们定义的名称,无需任何花括号或圆括号。设想我们稍后将为这个类型实现某种行为,使得每个 AlwaysEqual 的实例始终等于任何其它类型的实例,也许是为了获得一个已知的结果以便进行测试。我们无需要任何数据来实现这种行为!在第十章中,你会看到如何定义特征并在任何类型上实现它们,包括类单元结构体。

结构体数据的所有权

在示例 5-1 中的 User 结构体的定义中,我们使用了自身拥有所有权的 String 类型而不是 &str 字符串 slice 类型。这是一个有意而为之的选择,因为我们想要这个结构体拥有它所有的数据,为此只要整个结构体是有效的话其数据也是有效的。

可以使结构体存储被其他对象拥有的数据的引用,不过这么做的话需要用上 生命周期lifetimes),这是一个第十章会讨论的 Rust 功能。生命周期确保结构体引用的数据有效性跟结构体本身保持一致。如果你尝试在结构体中存储一个引用而不指定生命周期将是无效的,比如这样:

文件名:src/main.rs

struct User {
    active: bool,
    username: &str,
    email: &str,
    sign_in_count: u64,
}

fn main() {
    let user1 = User {
        active: true,
        username: "someusername123",
        email: "someone@example.com",
        sign_in_count: 1,
    };
}

编译器会抱怨它需要生命周期标识符:

$ cargo run
   Compiling structs v0.1.0 (file:///projects/structs)
error[E0106]: missing lifetime specifier
 --> src/main.rs:3:15
  |
3 |     username: &str,
  |               ^ expected named lifetime parameter
  |
help: consider introducing a named lifetime parameter
  |
1 ~ struct User<'a> {
2 |     active: bool,
3 ~     username: &'a str,
  |

error[E0106]: missing lifetime specifier
 --> src/main.rs:4:12
  |
4 |     email: &str,
  |            ^ expected named lifetime parameter
  |
help: consider introducing a named lifetime parameter
  |
1 ~ struct User<'a> {
2 |     active: bool,
3 |     username: &str,
4 ~     email: &'a str,
  |

For more information about this error, try `rustc --explain E0106`.
error: could not compile `structs` due to 2 previous errors

第十章会讲到如何修复这个问题以便在结构体中存储引用,不过现在,我们会使用像 String 这类拥有所有权的类型来替代 &str 这样的引用以修正这个错误。

结构体示例程序

ch05-02-example-structs.md
commit 8612c4a5801b61f8d2e952f8bbbb444692ff1ec2

为了理解何时会需要使用结构体,让我们编写一个计算长方形面积的程序。我们会从单独的变量开始,接着重构程序直到使用结构体替代它们为止。

使用 Cargo 新建一个叫做 rectangles 的二进制程序,它获取以像素为单位的长方形的宽度和高度,并计算出长方形的面积。示例 5-8 显示了位于项目的 src/main.rs 中的小程序,它刚刚好实现此功能:

文件名:src/main.rs

fn main() {
    let width1 = 30;
    let height1 = 50;

    println!(
        "The area of the rectangle is {} square pixels.",
        area(width1, height1)
    );
}

fn area(width: u32, height: u32) -> u32 {
    width * height
}

示例 5-8:通过分别指定长方形的宽和高的变量来计算长方形面积

现在使用 cargo run 运行程序:

$ cargo run
   Compiling rectangles v0.1.0 (file:///projects/rectangles)
    Finished dev [unoptimized + debuginfo] target(s) in 0.42s
     Running `target/debug/rectangles`
The area of the rectangle is 1500 square pixels.

这个示例代码在调用 area 函数时传入每个维度,虽然可以正确计算出长方形的面积,但我们仍然可以修改这段代码来使它的意义更加明确,并且增加可读性。

这些代码的问题突显在 area 的签名上:

fn main() {
    let width1 = 30;
    let height1 = 50;

    println!(
        "The area of the rectangle is {} square pixels.",
        area(width1, height1)
    );
}

fn area(width: u32, height: u32) -> u32 {
    width * height
}

函数 area 本应该计算一个长方形的面积,不过函数却有两个参数。这两个参数是相关联的,不过程序本身却没有表现出这一点。将长度和宽度组合在一起将更易懂也更易处理。第三章的 “元组类型” 部分已经讨论过了一种可行的方法:元组。

使用元组重构

示例 5-9 展示了使用元组的另一个程序版本。

文件名:src/main.rs

fn main() {
    let rect1 = (30, 50);

    println!(
        "The area of the rectangle is {} square pixels.",
        area(rect1)
    );
}

fn area(dimensions: (u32, u32)) -> u32 {
    dimensions.0 * dimensions.1
}

示例 5-9:使用元组来指定长方形的宽高

在某种程度上说,这个程序更好一点了。元组帮助我们增加了一些结构性,并且现在只需传一个参数。不过在另一方面,这个版本却有一点不明确了:元组并没有给出元素的名称,所以计算变得更费解了,因为不得不使用索引来获取元组的每一部分:

在计算面积时将宽和高弄混倒无关紧要,不过当在屏幕上绘制长方形时就有问题了!我们必须牢记 width 的元组索引是 0height 的元组索引是 1。如果其他人要使用这些代码,他们必须要搞清楚这一点,并也要牢记于心。很容易忘记或者混淆这些值而造成错误,因为我们没有在代码中传达数据的意图。

使用结构体重构:赋予更多意义

我们使用结构体为数据命名来为其赋予意义。我们可以将我们正在使用的元组转换成一个有整体名称而且每个部分也有对应名字的结构体,如示例 5-10 所示:

文件名:src/main.rs

struct Rectangle {
    width: u32,
    height: u32,
}

fn main() {
    let rect1 = Rectangle {
        width: 30,
        height: 50,
    };

    println!(
        "The area of the rectangle is {} square pixels.",
        area(&rect1)
    );
}

fn area(rectangle: &Rectangle) -> u32 {
    rectangle.width * rectangle.height
}

示例 5-10:定义 Rectangle 结构体

这里我们定义了一个结构体并称其为 Rectangle。在大括号中定义了字段 widthheight,类型都是 u32。接着在 main 中,我们创建了一个具体的 Rectangle 实例,它的宽是 30,高是 50

函数 area 现在被定义为接收一个名叫 rectangle 的参数,其类型是一个结构体 Rectangle 实例的不可变借用。第四章讲到过,我们希望借用结构体而不是获取它的所有权,这样 main 函数就可以保持 rect1 的所有权并继续使用它,所以这就是为什么在函数签名和调用的地方会有 &

area 函数访问 Rectangle 实例的 widthheight 字段(注意,访问对结构体的引用的字段不会移动字段的所有权,这就是为什么你经常看到对结构体的引用)。area 的函数签名现在明确的阐述了我们的意图:使用 Rectanglewidthheight 字段,计算 Rectangle 的面积。这表明宽高是相互联系的,并为这些值提供了描述性的名称而不是使用元组的索引值 01 。结构体胜在更清晰明了。

通过派生 trait 增加实用功能

在调试程序时打印出 Rectangle 实例来查看其所有字段的值非常有用。示例 5-11 像前面章节那样尝试使用 println!。但这并不行。

文件名:src/main.rs

struct Rectangle {
    width: u32,
    height: u32,
}

fn main() {
    let rect1 = Rectangle {
        width: 30,
        height: 50,
    };

    println!("rect1 is {}", rect1);
}

示例 5-11:尝试打印出 Rectangle 实例

当我们运行这个代码时,会出现带有如下核心信息的错误:

error[E0277]: `Rectangle` doesn't implement `std::fmt::Display`

println! 宏能处理很多类型的格式,不过,{} 默认告诉 println! 使用被称为 Display 的格式:意在提供给直接终端用户查看的输出。目前为止见过的基本类型都默认实现了 Display,因为它就是向用户展示 1 或其他任何基本类型的唯一方式。不过对于结构体,println! 应该用来输出的格式是不明确的,因为这有更多显示的可能性:是否需要逗号?需要打印出大括号吗?所有字段都应该显示吗?由于这种不确定性,Rust 不会尝试猜测我们的意图,所以结构体并没有提供一个 Display 实现来使用 println!{} 占位符。

但是如果我们继续阅读错误,将会发现这个有帮助的信息:

   = help: the trait `std::fmt::Display` is not implemented for `Rectangle`
   = note: in format strings you may be able to use `{:?}` (or {:#?} for pretty-print) instead

让我们来试试!现在 println! 宏调用看起来像 println!("rect1 is {:?}", rect1); 这样。在 {} 中加入 :? 指示符告诉 println! 我们想要使用叫做 Debug 的输出格式。Debug 是一个 trait,它允许我们以一种对开发者有帮助的方式打印结构体,以便当我们调试代码时能看到它的值。

这样调整后再次运行程序。见鬼了!仍然能看到一个错误:

error[E0277]: `Rectangle` doesn't implement `Debug`

不过编译器又一次给出了一个有帮助的信息:

   = help: the trait `Debug` is not implemented for `Rectangle`
   = note: add `#[derive(Debug)]` to `Rectangle` or manually `impl Debug for Rectangle`

Rust 确实 包含了打印出调试信息的功能,不过我们必须为结构体显式选择这个功能。为此,在结构体定义之前加上外部属性 #[derive(Debug)],如示例 5-12 所示:

文件名:src/main.rs

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

fn main() {
    let rect1 = Rectangle {
        width: 30,
        height: 50,
    };

    println!("rect1 is {:?}", rect1);
}

示例 5-12:增加属性来派生 Debug trait,并使用调试格式打印 Rectangle 实例

现在我们再运行这个程序时,就不会有任何错误,并会出现如下输出:

$ cargo run
   Compiling rectangles v0.1.0 (file:///projects/rectangles)
    Finished dev [unoptimized + debuginfo] target(s) in 0.48s
     Running `target/debug/rectangles`
rect1 is Rectangle { width: 30, height: 50 }

好极了!这并不是最漂亮的输出,不过它显示这个实例的所有字段,毫无疑问这对调试有帮助。当我们有一个更大的结构体时,能有更易读一点的输出就好了,为此可以使用 {:#?} 替换 println! 字符串中的 {:?}。在这个例子中使用 {:#?} 风格将会输出如下:

$ cargo run
   Compiling rectangles v0.1.0 (file:///projects/rectangles)
    Finished dev [unoptimized + debuginfo] target(s) in 0.48s
     Running `target/debug/rectangles`
rect1 is Rectangle {
    width: 30,
    height: 50,
}

另一种使用 Debug 格式打印数值的方法是使用 dbg!dbg! 宏接收一个表达式的所有权(与 println! 宏相反,后者接收的是引用),打印出代码中调用 dbg! 宏时所在的文件和行号,以及该表达式的结果值,并返回该值的所有权。

注意:调用 dbg! 宏会打印到标准错误控制台流(stderr),与 println! 不同,后者会打印到标准输出控制台流(stdout)。我们将在第十二章 “将错误信息写入标准错误而不是标准输出” 一节中更多地讨论 stderrstdout

下面是一个例子,我们对分配给 width 字段的值以及 rect1 中整个结构的值感兴趣。

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

fn main() {
    let scale = 2;
    let rect1 = Rectangle {
        width: dbg!(30 * scale),
        height: 50,
    };

    dbg!(&rect1);
}

我们可以把 dbg! 放在表达式 30 * scale 周围,因为 dbg! 返回表达式的值的所有权,所以 width 字段将获得相同的值,就像我们在那里没有 dbg! 调用一样。我们不希望 dbg! 拥有 rect1 的所有权,所以我们在下一次调用 dbg! 时传递一个引用。下面是这个例子的输出结果:

$ cargo run
   Compiling rectangles v0.1.0 (file:///projects/rectangles)
    Finished dev [unoptimized + debuginfo] target(s) in 0.61s
     Running `target/debug/rectangles`
[src/main.rs:10] 30 * scale = 60
[src/main.rs:14] &rect1 = Rectangle {
    width: 60,
    height: 50,
}

我们可以看到第一点输出来自 src/main.rs 第 10 行,我们正在调试表达式 30 * scale,其结果值是 60(为整数实现的 Debug 格式化是只打印它们的值)。在 src/main.rs 第 14 行 的 dbg! 调用输出 &rect1 的值,即 Rectangle 结构。这个输出使用了更为易读的 Debug 格式。当你试图弄清楚你的代码在做什么时,dbg! 宏可能真的很有帮助!

除了 Debug trait,Rust 还为我们提供了很多可以通过 derive 属性来使用的 trait,它们可以为我们的自定义类型增加实用的行为。附录 C 中列出了这些 trait 和行为。第十章会介绍如何通过自定义行为来实现这些 trait,同时还有如何创建你自己的 trait。除了 derive 之外,还有很多属性;更多信息请参见 Rust Reference 的 Attributes 部分。

我们的 area 函数是非常特殊的,它只计算长方形的面积。如果这个行为与 Rectangle 结构体再结合得更紧密一些就更好了,因为它不能用于其他类型。现在让我们看看如何继续重构这些代码,来将 area 函数协调进 Rectangle 类型定义的 area 方法 中。

方法语法

ch05-03-method-syntax.md
commit d339373a838fd312a8a9bcc9487e1ffbc9e1582f

方法(method)与函数类似:它们使用 fn 关键字和名称声明,可以拥有参数和返回值,同时包含在某处调用该方法时会执行的代码。不过方法与函数是不同的,因为它们在结构体的上下文中被定义(或者是枚举或 trait 对象的上下文,将分别在第六章第十七章讲解),并且它们第一个参数总是 self,它代表调用该方法的结构体实例。

定义方法

让我们把前面实现的获取一个 Rectangle 实例作为参数的 area 函数,改写成一个定义于 Rectangle 结构体上的 area 方法,如示例 5-13 所示:

文件名:src/main.rs

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn area(&self) -> u32 {
        self.width * self.height
    }
}

fn main() {
    let rect1 = Rectangle {
        width: 30,
        height: 50,
    };

    println!(
        "The area of the rectangle is {} square pixels.",
        rect1.area()
    );
}

示例 5-13:在 Rectangle 结构体上定义 area 方法

为了使函数定义于 Rectangle 的上下文中,我们开始了一个 impl 块(implimplementation 的缩写),这个 impl 块中的所有内容都将与 Rectangle 类型相关联。接着将 area 函数移动到 impl 大括号中,并将签名中的第一个(在这里也是唯一一个)参数和函数体中其他地方的对应参数改成 self。然后在 main 中将我们先前调用 area 方法并传递 rect1 作为参数的地方,改成使用 方法语法method syntax)在 Rectangle 实例上调用 area 方法。方法语法获取一个实例并加上一个点号,后跟方法名、圆括号以及任何参数。

area 的签名中,使用 &self 来替代 rectangle: &Rectangle&self 实际上是 self: &Self 的缩写。在一个 impl 块中,Self 类型是 impl 块的类型的别名。方法的第一个参数必须有一个名为 selfSelf 类型的参数,所以 Rust 让你在第一个参数位置上只用 self 这个名字来缩写。注意,我们仍然需要在 self 前面使用 & 来表示这个方法借用了 Self 实例,就像我们在 rectangle: &Rectangle 中做的那样。方法可以选择获得 self 的所有权,或者像我们这里一样不可变地借用 self,或者可变地借用 self,就跟其他参数一样。

这里选择 &self 的理由跟在函数版本中使用 &Rectangle 是相同的:我们并不想获取所有权,只希望能够读取结构体中的数据,而不是写入。如果想要在方法中改变调用方法的实例,需要将第一个参数改为 &mut self。通过仅仅使用 self 作为第一个参数来使方法获取实例的所有权是很少见的;这种技术通常用在当方法将 self 转换成别的实例的时候,这时我们想要防止调用者在转换之后使用原始的实例。

使用方法替代函数,除了可使用方法语法和不需要在每个函数签名中重复 self 的类型之外,其主要好处在于组织性。我们将某个类型实例能做的所有事情都一起放入 impl 块中,而不是让将来的用户在我们的库中到处寻找 Rectangle 的功能。

请注意,我们可以选择将方法的名称与结构中的一个字段相同。例如,我们可以在 Rectangle 上定义一个方法,并命名为 width

文件名:src/main.rs

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn width(&self) -> bool {
        self.width > 0
    }
}

fn main() {
    let rect1 = Rectangle {
        width: 30,
        height: 50,
    };

    if rect1.width() {
        println!("The rectangle has a nonzero width; it is {}", rect1.width);
    }
}

在这里,我们选择让 width 方法在实例的 width 字段的值大于 0 时返回 true,等于 0 时则返回 false:我们可以出于任何目的,在同名的方法中使用同名的字段。在 main 中,当我们在 rect1.width 后面加上括号时。Rust 知道我们指的是方法 width。当我们不使用圆括号时,Rust 知道我们指的是字段 width

通常,但并不总是如此,与字段同名的方法将被定义为只返回字段中的值,而不做其他事情。这样的方法被称为 getters,Rust 并不像其他一些语言那样为结构字段自动实现它们。Getters 很有用,因为你可以把字段变成私有的,但方法是公共的,这样就可以把对字段的只读访问作为该类型公共 API 的一部分。我们将在第七章中讨论什么是公有和私有,以及如何将一个字段或方法指定为公有或私有。

-> 运算符到哪去了?

在 C/C++ 语言中,有两个不同的运算符来调用方法:. 直接在对象上调用方法,而 -> 在一个对象的指针上调用方法,这时需要先解引用(dereference)指针。换句话说,如果 object 是一个指针,那么 object->something() 就像 (*object).something() 一样。

Rust 并没有一个与 -> 等效的运算符;相反,Rust 有一个叫 自动引用和解引用automatic referencing and dereferencing)的功能。方法调用是 Rust 中少数几个拥有这种行为的地方。

它是这样工作的:当使用 object.something() 调用方法时,Rust 会自动为 object 添加 &&mut* 以便使 object 与方法签名匹配。也就是说,这些代码是等价的:

#![allow(unused)]
fn main() {
#[derive(Debug,Copy,Clone)]
struct Point {
    x: f64,
    y: f64,
}

impl Point {
   fn distance(&self, other: &Point) -> f64 {
       let x_squared = f64::powi(other.x - self.x, 2);
       let y_squared = f64::powi(other.y - self.y, 2);

       f64::sqrt(x_squared + y_squared)
   }
}
let p1 = Point { x: 0.0, y: 0.0 };
let p2 = Point { x: 5.0, y: 6.5 };
p1.distance(&p2);
(&p1).distance(&p2);
}

第一行看起来简洁的多。这种自动引用的行为之所以有效,是因为方法有一个明确的接收者———— self 的类型。在给出接收者和方法名的前提下,Rust 可以明确地计算出方法是仅仅读取(&self),做出修改(&mut self)或者是获取所有权(self)。事实上,Rust 对方法接收者的隐式借用让所有权在实践中更友好。

带有更多参数的方法

让我们通过实现 Rectangle 结构体上的另一方法来练习使用方法。这回,我们让一个 Rectangle 的实例获取另一个 Rectangle 实例,如果 self (第一个 Rectangle)能完全包含第二个长方形则返回 true;否则返回 false。一旦我们定义了 can_hold 方法,就可以编写示例 5-14 中的代码。

文件名:src/main.rs

fn main() {
    let rect1 = Rectangle {
        width: 30,
        height: 50,
    };
    let rect2 = Rectangle {
        width: 10,
        height: 40,
    };
    let rect3 = Rectangle {
        width: 60,
        height: 45,
    };

    println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));
    println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));
}

示例 5-14:使用还未实现的 can_hold 方法

同时我们希望看到如下输出,因为 rect2 的两个维度都小于 rect1,而 rect3rect1 要宽:

Can rect1 hold rect2? true
Can rect1 hold rect3? false

因为我们想定义一个方法,所以它应该位于 impl Rectangle 块中。方法名是 can_hold,并且它会获取另一个 Rectangle 的不可变借用作为参数。通过观察调用方法的代码可以看出参数是什么类型的:rect1.can_hold(&rect2) 传入了 &rect2,它是一个 Rectangle 的实例 rect2 的不可变借用。这是可以理解的,因为我们只需要读取 rect2(而不是写入,这意味着我们需要一个不可变借用),而且希望 main 保持 rect2 的所有权,这样就可以在调用这个方法后继续使用它。can_hold 的返回值是一个布尔值,其实现会分别检查 self 的宽高是否都大于另一个 Rectangle。让我们在示例 5-13 的 impl 块中增加这个新的 can_hold 方法,如示例 5-15 所示:

文件名:src/main.rs

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn area(&self) -> u32 {
        self.width * self.height
    }

    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width > other.width && self.height > other.height
    }
}

fn main() {
    let rect1 = Rectangle {
        width: 30,
        height: 50,
    };
    let rect2 = Rectangle {
        width: 10,
        height: 40,
    };
    let rect3 = Rectangle {
        width: 60,
        height: 45,
    };

    println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));
    println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));
}

示例 5-15:在 Rectangle 上实现 can_hold 方法,它获取另一个 Rectangle 实例作为参数

如果结合示例 5-14 的 main 函数来运行,就会看到期望的输出。在方法签名中,可以在 self 后增加多个参数,而且这些参数就像函数中的参数一样工作。

关联函数

所有在 impl 块中定义的函数被称为 关联函数associated functions),因为它们与 impl 后面命名的类型相关。我们可以定义不以 self 为第一参数的关联函数(因此不是方法),因为它们并不作用于一个结构体的实例。我们已经使用了一个这样的函数:在 String 类型上定义的 String::from 函数。

不是方法的关联函数经常被用作返回一个结构体新实例的构造函数。这些函数的名称通常为 new ,但 new 并不是一个关键字。例如我们可以提供一个叫做 square 关联函数,它接受一个维度参数并且同时作为宽和高,这样可以更轻松的创建一个正方形 Rectangle 而不必指定两次同样的值:

文件名:src/main.rs

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn square(size: u32) -> Self {
        Self {
            width: size,
            height: size,
        }
    }
}

fn main() {
    let sq = Rectangle::square(3);
}

关键字 Self 在函数的返回类型中代指在 impl 关键字后出现的类型,在这里是 Rectangle

使用结构体名和 :: 语法来调用这个关联函数:比如 let sq = Rectangle::square(3);。这个函数位于结构体的命名空间中::: 语法用于关联函数和模块创建的命名空间。第七章会讲到模块。

多个 impl

每个结构体都允许拥有多个 impl 块。例如,示例 5-16 中的代码等同于示例 5-15,但每个方法有其自己的 impl 块。

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn area(&self) -> u32 {
        self.width * self.height
    }
}

impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width > other.width && self.height > other.height
    }
}

fn main() {
    let rect1 = Rectangle {
        width: 30,
        height: 50,
    };
    let rect2 = Rectangle {
        width: 10,
        height: 40,
    };
    let rect3 = Rectangle {
        width: 60,
        height: 45,
    };

    println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));
    println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));
}

示例 5-16:使用多个 impl 块重写示例 5-15

这里没有理由将这些方法分散在多个 impl 块中,不过这是有效的语法。第十章讨论泛型和 trait 时会看到实用的多 impl 块的用例。

总结

结构体让你可以创建出在你的领域中有意义的自定义类型。通过结构体,我们可以将相关联的数据片段联系起来并命名它们,这样可以使得代码更加清晰。在 impl 块中,你可以定义与你的类型相关联的函数,而方法是一种相关联的函数,让你指定结构体的实例所具有的行为。

但结构体并不是创建自定义类型的唯一方法:让我们转向 Rust 的枚举功能,为你的工具箱再添一个工具。

枚举和模式匹配

ch06-00-enums.md
commit bb7e429ad6b59d9a0c37db7434976364cbb9c6da

本章介绍 枚举enumerations),也被称作 enums。枚举允许你通过列举可能的 成员variants)来定义一个类型。首先,我们会定义并使用一个枚举来展示它是如何连同数据一起编码信息的。接下来,我们会探索一个特别有用的枚举,叫做 Option,它代表一个值要么是某个值要么什么都不是。然后会讲到在 match 表达式中用模式匹配,针对不同的枚举值编写相应要执行的代码。最后会介绍 if let,另一个简洁方便处理代码中枚举的结构。

枚举的定义

ch06-01-defining-an-enum.md
commit bb7e429ad6b59d9a0c37db7434976364cbb9c6da

结构体给予你将字段和数据聚合在一起的方法,像 Rectangle 结构体有 widthheight 两个字段。而枚举给予你将一个值成为一个集合之一的方法。比如,我们想让 Rectangle 是一些形状的集合,包含 CircleTriangle 。为了做到这个,Rust 提供了枚举类型。

让我们看看一个需要诉诸于代码的场景,来考虑为何此时使用枚举更为合适且实用。假设我们要处理 IP 地址。目前被广泛使用的两个主要 IP 标准:IPv4(version four)和 IPv6(version six)。这是我们的程序可能会遇到的所有可能的 IP 地址类型:所以可以 枚举 出所有可能的值,这也正是此枚举名字的由来。

任何一个 IP 地址要么是 IPv4 的要么是 IPv6 的,而且不能两者都是。IP 地址的这个特性使得枚举数据结构非常适合这个场景,因为枚举值只可能是其中一个成员。IPv4 和 IPv6 从根本上讲仍是 IP 地址,所以当代码在处理适用于任何类型的 IP 地址的场景时应该把它们当作相同的类型。

可以通过在代码中定义一个 IpAddrKind 枚举来表现这个概念并列出可能的 IP 地址类型,V4V6。这被称为枚举的 成员variants):

enum IpAddrKind {
    V4,
    V6,
}

fn main() {
    let four = IpAddrKind::V4;
    let six = IpAddrKind::V6;

    route(IpAddrKind::V4);
    route(IpAddrKind::V6);
}

fn route(ip_kind: IpAddrKind) {}

现在 IpAddrKind 就是一个可以在代码中使用的自定义数据类型了。

枚举值

可以像这样创建 IpAddrKind 两个不同成员的实例:

enum IpAddrKind {
    V4,
    V6,
}

fn main() {
    let four = IpAddrKind::V4;
    let six = IpAddrKind::V6;

    route(IpAddrKind::V4);
    route(IpAddrKind::V6);
}

fn route(ip_kind: IpAddrKind) {}

注意枚举的成员位于其标识符的命名空间中,并使用两个冒号分开。这么设计的益处是现在 IpAddrKind::V4IpAddrKind::V6 都是 IpAddrKind 类型的。例如,接着可以定义一个函数来获取任何 IpAddrKind

enum IpAddrKind {
    V4,
    V6,
}

fn main() {
    let four = IpAddrKind::V4;
    let six = IpAddrKind::V6;

    route(IpAddrKind::V4);
    route(IpAddrKind::V6);
}

fn route(ip_kind: IpAddrKind) {}

现在可以使用任一成员来调用这个函数:

enum IpAddrKind {
    V4,
    V6,
}

fn main() {
    let four = IpAddrKind::V4;
    let six = IpAddrKind::V6;

    route(IpAddrKind::V4);
    route(IpAddrKind::V6);
}

fn route(ip_kind: IpAddrKind) {}

使用枚举甚至还有更多优势。进一步考虑一下我们的 IP 地址类型,目前没有一个存储实际 IP 地址 数据 的方法;只知道它是什么 类型 的。考虑到已经在第五章学习过结构体了,你可能会像示例 6-1 那样处理这个问题:

fn main() {
    enum IpAddrKind {
        V4,
        V6,
    }

    struct IpAddr {
        kind: IpAddrKind,
        address: String,
    }

    let home = IpAddr {
        kind: IpAddrKind::V4,
        address: String::from("127.0.0.1"),
    };

    let loopback = IpAddr {
        kind: IpAddrKind::V6,
        address: String::from("::1"),
    };
}

示例 6-1:将 IP 地址的数据和 IpAddrKind 成员存储在一个 struct

这里我们定义了一个有两个字段的结构体 IpAddrIpAddrKind(之前定义的枚举)类型的 kind 字段和 String 类型 address 字段。我们有这个结构体的两个实例。第一个,home,它的 kind 的值是 IpAddrKind::V4 与之相关联的地址数据是 127.0.0.1。第二个实例,loopbackkind 的值是 IpAddrKind 的另一个成员,V6,关联的地址是 ::1。我们使用了一个结构体来将 kindaddress 打包在一起,现在枚举成员就与值相关联了。

我们可以使用一种更简洁的方式来表达相同的概念,仅仅使用枚举并将数据直接放进每一个枚举成员而不是将枚举作为结构体的一部分。IpAddr 枚举的新定义表明了 V4V6 成员都关联了 String 值:

fn main() {
    enum IpAddr {
        V4(String),
        V6(String),
    }

    let home = IpAddr::V4(String::from("127.0.0.1"));

    let loopback = IpAddr::V6(String::from("::1"));
}

我们直接将数据附加到枚举的每个成员上,这样就不需要一个额外的结构体了。这里也很容易看出枚举工作的另一个细节:每一个我们定义的枚举成员的名字也变成了一个构建枚举的实例的函数。也就是说,IpAddr::V4() 是一个获取 String 参数并返回 IpAddr 类型实例的函数调用。作为定义枚举的结果,这些构造函数会自动被定义。

用枚举替代结构体还有另一个优势:每个成员可以处理不同类型和数量的数据。IPv4 版本的 IP 地址总是含有四个值在 0 和 255 之间的数字部分。如果我们想要将 V4 地址存储为四个 u8 值而 V6 地址仍然表现为一个 String,这就不能使用结构体了。枚举则可以轻易的处理这个情况:

fn main() {
    enum IpAddr {
        V4(u8, u8, u8, u8),
        V6(String),
    }

    let home = IpAddr::V4(127, 0, 0, 1);

    let loopback = IpAddr::V6(String::from("::1"));
}

这些代码展示了使用枚举来存储两种不同 IP 地址的几种可能的选择。然而,事实证明存储和编码 IP 地址实在是太常见了以致标准库提供了一个开箱即用的定义!让我们看看标准库是如何定义 IpAddr 的:它正有着跟我们定义和使用的一样的枚举和成员,不过它将成员中的地址数据嵌入到了两个不同形式的结构体中,它们对不同的成员的定义是不同的:

#![allow(unused)]
fn main() {
struct Ipv4Addr {
    // --snip--
}

struct Ipv6Addr {
    // --snip--
}

enum IpAddr {
    V4(Ipv4Addr),
    V6(Ipv6Addr),
}
}

这些代码展示了可以将任意类型的数据放入枚举成员中:例如字符串、数字类型或者结构体。甚至可以包含另一个枚举!另外,标准库中的类型通常并不比你设想出来的要复杂多少。

注意虽然标准库中包含一个 IpAddr 的定义,仍然可以创建和使用我们自己的定义而不会有冲突,因为我们并没有将标准库中的定义引入作用域。第七章会讲到如何导入类型。

来看看示例 6-2 中的另一个枚举的例子:它的成员中内嵌了多种多样的类型:

enum Message {
    Quit,
    Move { x: i32, y: i32 },
    Write(String),
    ChangeColor(i32, i32, i32),
}

fn main() {}

示例 6-2:一个 Message 枚举,其每个成员都存储了不同数量和类型的值

这个枚举有四个含有不同类型的成员:

  • Quit 没有关联任何数据。
  • Move 类似结构体包含命名字段。
  • Write 包含单独一个 String
  • ChangeColor 包含三个 i32

定义一个如示例 6-2 中所示那样的有关联值的枚举的方式和定义多个不同类型的结构体的方式很相像,除了枚举不使用 struct 关键字以及其所有成员都被组合在一起位于 Message 类型下。如下这些结构体可以包含与之前枚举成员中相同的数据:

struct QuitMessage; // 类单元结构体
struct MoveMessage {
    x: i32,
    y: i32,
}
struct WriteMessage(String); // 元组结构体
struct ChangeColorMessage(i32, i32, i32); // 元组结构体

fn main() {}

不过,如果我们使用不同的结构体,由于它们都有不同的类型,我们将不能像使用示例 6-2 中定义的 Message 枚举那样,轻易的定义一个能够处理这些不同类型的结构体的函数,因为枚举是单独一个类型。

结构体和枚举还有另一个相似点:就像可以使用 impl 来为结构体定义方法那样,也可以在枚举上定义方法。这是一个定义于我们 Message 枚举上的叫做 call 的方法:

fn main() {
    enum Message {
        Quit,
        Move { x: i32, y: i32 },
        Write(String),
        ChangeColor(i32, i32, i32),
    }

    impl Message {
        fn call(&self) {
            // 在这里定义方法体
        }
    }

    let m = Message::Write(String::from("hello"));
    m.call();
}

方法体使用了 self 来获取调用方法的值。这个例子中,创建了一个值为 Message::Write(String::from("hello")) 的变量 m,而且这就是当 m.call() 运行时 call 方法中的 self 的值。

让我们看看标准库中的另一个非常常见且实用的枚举:Option

Option 枚举和其相对于空值的优势

这一部分会分析一个 Option 的案例,Option 是标准库定义的另一个枚举。Option 类型应用广泛因为它编码了一个非常普遍的场景,即一个值要么有值要么没值。

例如,如果请求一个非空列表的第一项,会得到一个值,如果请求一个空的列表,就什么也不会得到。从类型系统的角度来表达这个概念就意味着编译器需要检查是否处理了所有应该处理的情况,这样就可以避免在其他编程语言中非常常见的 bug。

编程语言的设计经常要考虑包含哪些功能,但考虑排除哪些功能也很重要。Rust 并没有很多其他语言中有的空值功能。空值Null )是一个值,它代表没有值。在有空值的语言中,变量总是这两种状态之一:空值和非空值。

Tony Hoare,null 的发明者,在他 2009 年的演讲 “Null References: The Billion Dollar Mistake” 中曾经说到:

I call it my billion-dollar mistake. At that time, I was designing the first comprehensive type system for references in an object-oriented language. My goal was to ensure that all use of references should be absolutely safe, with checking performed automatically by the compiler. But I couldn't resist the temptation to put in a null reference, simply because it was so easy to implement. This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty years.

我称之为我十亿美元的错误。当时,我在为一个面向对象语言设计第一个综合性的面向引用的类型系统。我的目标是通过编译器的自动检查来保证所有引用的使用都应该是绝对安全的。不过我未能抵抗住引入一个空引用的诱惑,仅仅是因为它是这么的容易实现。这引发了无数错误、漏洞和系统崩溃,在之后的四十多年中造成了数十亿美元的苦痛和伤害。

空值的问题在于当你尝试像一个非空值那样使用一个空值,会出现某种形式的错误。因为空和非空的属性无处不在,非常容易出现这类错误。

然而,空值尝试表达的概念仍然是有意义的:空值是一个因为某种原因目前无效或缺失的值。

问题不在于概念而在于具体的实现。为此,Rust 并没有空值,不过它确实拥有一个可以编码存在或不存在概念的枚举。这个枚举是 Option<T>,而且它定义于标准库中,如下:

#![allow(unused)]
fn main() {
enum Option<T> {
    None,
    Some(T),
}
}

Option<T> 枚举是如此有用以至于它甚至被包含在了 prelude 之中,你不需要将其显式引入作用域。另外,它的成员也是如此,可以不需要 Option:: 前缀来直接使用 SomeNone。即便如此 Option<T> 也仍是常规的枚举,Some(T)None 仍是 Option<T> 的成员。

<T> 语法是一个我们还未讲到的 Rust 功能。它是一个泛型类型参数,第十章会更详细的讲解泛型。目前,所有你需要知道的就是 <T> 意味着 Option 枚举的 Some 成员可以包含任意类型的数据,同时每一个用于 T 位置的具体类型使得 Option<T> 整体作为不同的类型。这里是一些包含数字类型和字符串类型 Option 值的例子:

fn main() {
    let some_number = Some(5);
    let some_char = Some('e');

    let absent_number: Option<i32> = None;
}

some_number 的类型是 Option<i32>some_char 的类型是 Option<char>,这(与 some_number)是一个不同的类型。因为我们在 Some 成员中指定了值,Rust 可以推断其类型。对于 absent_number,Rust 需要我们指定 Option 整体的类型,因为编译器只通过 None 值无法推断出 Some 成员保存的值的类型。这里我们告诉 Rust 希望 absent_numberOption<i32> 类型的。

当有一个 Some 值时,我们就知道存在一个值,而这个值保存在 Some 中。当有个 None 值时,在某种意义上,它跟空值具有相同的意义:并没有一个有效的值。那么,Option<T> 为什么就比空值要好呢?

简而言之,因为 Option<T>T(这里 T 可以是任何类型)是不同的类型,编译器不允许像一个肯定有效的值那样使用 Option<T>。例如,这段代码不能编译,因为它尝试将 Option<i8>i8 相加:

fn main() {
    let x: i8 = 5;
    let y: Option<i8> = Some(5);

    let sum = x + y;
}

如果运行这些代码,将得到类似这样的错误信息:

$ cargo run
   Compiling enums v0.1.0 (file:///projects/enums)
error[E0277]: cannot add `Option<i8>` to `i8`
 --> src/main.rs:5:17
  |
5 |     let sum = x + y;
  |                 ^ no implementation for `i8 + Option<i8>`
  |
  = help: the trait `Add<Option<i8>>` is not implemented for `i8`
  = help: the following other types implement trait `Add<Rhs>`:
            <&'a f32 as Add<f32>>
            <&'a f64 as Add<f64>>
            <&'a i128 as Add<i128>>
            <&'a i16 as Add<i16>>
            <&'a i32 as Add<i32>>
            <&'a i64 as Add<i64>>
            <&'a i8 as Add<i8>>
            <&'a isize as Add<isize>>
          and 48 others

For more information about this error, try `rustc --explain E0277`.
error: could not compile `enums` due to previous error

很好!事实上,错误信息意味着 Rust 不知道该如何将 Option<i8>i8 相加,因为它们的类型不同。当在 Rust 中拥有一个像 i8 这样类型的值时,编译器确保它总是有一个有效的值。我们可以自信使用而无需做空值检查。只有当使用 Option<i8>(或者任何用到的类型)的时候需要担心可能没有值,而编译器会确保我们在使用值之前处理了为空的情况。

换句话说,在对 Option<T> 进行运算之前必须将其转换为 T。通常这能帮助我们捕获到空值最常见的问题之一:假设某值不为空但实际上为空的情况。

消除了错误地假设一个非空值的风险,会让你对代码更加有信心。为了拥有一个可能为空的值,你必须要显式的将其放入对应类型的 Option<T> 中。接着,当使用这个值时,必须明确的处理值为空的情况。只要一个值不是 Option<T> 类型,你就 可以 安全的认定它的值不为空。这是 Rust 的一个经过深思熟虑的设计决策,来限制空值的泛滥以增加 Rust 代码的安全性。

那么当有一个 Option<T> 的值时,如何从 Some 成员中取出 T 的值来使用它呢?Option<T> 枚举拥有大量用于各种情况的方法:你可以查看它的文档。熟悉 Option<T> 的方法将对你的 Rust 之旅非常有用。

总的来说,为了使用 Option<T> 值,需要编写处理每个成员的代码。你想要一些代码只当拥有 Some(T) 值时运行,允许这些代码使用其中的 T。也希望一些代码只在值为 None 时运行,这些代码并没有一个可用的 T 值。match 表达式就是这么一个处理枚举的控制流结构:它会根据枚举的成员运行不同的代码,这些代码可以使用匹配到的值中的数据。

match 控制流结构

ch06-02-match.md
commit 3962c0224b274e2358e0acf06443af64df115359

Rust 有一个叫做 match 的极为强大的控制流运算符,它允许我们将一个值与一系列的模式相比较,并根据相匹配的模式执行相应代码。模式可由字面值、变量、通配符和许多其他内容构成;第十八章会涉及到所有不同种类的模式以及它们的作用。match 的力量来源于模式的表现力以及编译器检查,它确保了所有可能的情况都得到处理。

可以把 match 表达式想象成某种硬币分类器:硬币滑入有着不同大小孔洞的轨道,每一个硬币都会掉入符合它大小的孔洞。同样地,值也会通过 match 的每一个模式,并且在遇到第一个 “符合” 的模式时,值会进入相关联的代码块并在执行中被使用。

因为刚刚提到了硬币,让我们用它们来作为一个使用 match 的例子!我们可以编写一个函数来获取一个未知的硬币,并以一种类似验钞机的方式,确定它是何种硬币并返回它的美分值,如示例 6-3 中所示。

enum Coin {
    Penny,
    Nickel,
    Dime,
    Quarter,
}

fn value_in_cents(coin: Coin) -> u8 {
    match coin {
        Coin::Penny => 1,
        Coin::Nickel => 5,
        Coin::Dime => 10,
        Coin::Quarter => 25,
    }
}

fn main() {}

示例 6-3:一个枚举和一个以枚举成员作为模式的 match 表达式

拆开 value_in_cents 函数中的 match 来看。首先,我们列出 match 关键字后跟一个表达式,在这个例子中是 coin 的值。这看起来非常像 if 所使用的条件表达式,不过这里有一个非常大的区别:对于 if,表达式必须返回一个布尔值,而这里它可以是任何类型的。例子中的 coin 的类型是示例 6-3 中定义的 Coin 枚举。

接下来是 match 的分支。一个分支有两个部分:一个模式和一些代码。第一个分支的模式是值 Coin::Penny 而之后的 => 运算符将模式和将要运行的代码分开。这里的代码就仅仅是值 1。每一个分支之间使用逗号分隔。

match 表达式执行时,它将结果值按顺序与每一个分支的模式相比较。如果模式匹配了这个值,这个模式相关联的代码将被执行。如果模式并不匹配这个值,将继续执行下一个分支,非常类似一个硬币分类器。可以拥有任意多的分支:示例 6-3 中的 match 有四个分支。

每个分支相关联的代码是一个表达式,而表达式的结果值将作为整个 match 表达式的返回值。

如果分支代码较短的话通常不使用大括号,正如示例 6-3 中的每个分支都只是返回一个值。如果想要在分支中运行多行代码,可以使用大括号,而分支后的逗号是可选的。例如,如下代码在每次使用Coin::Penny 调用时都会打印出 “Lucky penny!”,同时仍然返回代码块最后的值,1

enum Coin {
    Penny,
    Nickel,
    Dime,
    Quarter,
}

fn value_in_cents(coin: Coin) -> u8 {
    match coin {
        Coin::Penny => {
            println!("Lucky penny!");
            1
        }
        Coin::Nickel => 5,
        Coin::Dime => 10,
        Coin::Quarter => 25,
    }
}

fn main() {}

绑定值的模式

匹配分支的另一个有用的功能是可以绑定匹配的模式的部分值。这也就是如何从枚举成员中提取值的。

作为一个例子,让我们修改枚举的一个成员来存放数据。1999 年到 2008 年间,美国在 25 美分的硬币的一侧为 50 个州的每一个都印刷了不同的设计。其他的硬币都没有这种区分州的设计,所以只有这些 25 美分硬币有特殊的价值。可以将这些信息加入我们的 enum,通过改变 Quarter 成员来包含一个 State 值,示例 6-4 中完成了这些修改:

#[derive(Debug)] // 这样可以立刻看到州的名称
enum UsState {
    Alabama,
    Alaska,
    // --snip--
}

enum Coin {
    Penny,
    Nickel,
    Dime,
    Quarter(UsState),
}

fn main() {}

示例 6-4:Quarter 成员也存放了一个 UsState 值的 Coin 枚举

想象一下我们的一个朋友尝试收集所有 50 个州的 25 美分硬币。在根据硬币类型分类零钱的同时,也可以报告出每个 25 美分硬币所对应的州名称,这样如果我们的朋友没有的话,他可以将其加入收藏。

在这些代码的匹配表达式中,我们在匹配 Coin::Quarter 成员的分支的模式中增加了一个叫做 state 的变量。当匹配到 Coin::Quarter 时,变量 state 将会绑定 25 美分硬币所对应州的值。接着在那个分支的代码中使用 state,如下:

#[derive(Debug)]
enum UsState {
    Alabama,
    Alaska,
    // --snip--
}

enum Coin {
    Penny,
    Nickel,
    Dime,
    Quarter(UsState),
}

fn value_in_cents(coin: Coin) -> u8 {
    match coin {
        Coin::Penny => 1,
        Coin::Nickel => 5,
        Coin::Dime => 10,
        Coin::Quarter(state) => {
            println!("State quarter from {:?}!", state);
            25
        }
    }
}

fn main() {
    value_in_cents(Coin::Quarter(UsState::Alaska));
}

如果调用 value_in_cents(Coin::Quarter(UsState::Alaska))coin 将是 Coin::Quarter(UsState::Alaska)。当将值与每个分支相比较时,没有分支会匹配,直到遇到 Coin::Quarter(state)。这时,state 绑定的将会是值 UsState::Alaska。接着就可以在 println! 表达式中使用这个绑定了,像这样就可以获取 Coin 枚举的 Quarter 成员中内部的州的值。

匹配 Option<T>

我们在之前的部分中使用 Option<T> 时,是为了从 Some 中取出其内部的 T 值;我们还可以像处理 Coin 枚举那样使用 match 处理 Option<T>!只不过这回比较的不再是硬币,而是 Option<T> 的成员,但 match 表达式的工作方式保持不变。

比如我们想要编写一个函数,它获取一个 Option<i32> ,如果其中含有一个值,将其加一。如果其中没有值,函数应该返回 None 值,而不尝试执行任何操作。

得益于 match,编写这个函数非常简单,它将看起来像示例 6-5 中这样:

fn main() {
    fn plus_one(x: Option<i32>) -> Option<i32> {
        match x {
            None => None,
            Some(i) => Some(i + 1),
        }
    }

    let five = Some(5);
    let six = plus_one(five);
    let none = plus_one(None);
}

示例 6-5:一个在 Option<i32> 上使用 match 表达式的函数

匹配 Some(T)

让我们更仔细地检查 plus_one 的第一行操作。当调用 plus_one(five) 时,plus_one 函数体中的 x 将会是值 Some(5)。接着将其与每个分支比较。

fn main() {
    fn plus_one(x: Option<i32>) -> Option<i32> {
        match x {
            None => None,
            Some(i) => Some(i + 1),
        }
    }

    let five = Some(5);
    let six = plus_one(five);
    let none = plus_one(None);
}

Some(5) 并不匹配模式 None,所以继续进行下一个分支。

fn main() {
    fn plus_one(x: Option<i32>) -> Option<i32> {
        match x {
            None => None,
            Some(i) => Some(i + 1),
        }
    }

    let five = Some(5);
    let six = plus_one(five);
    let none = plus_one(None);
}

Some(5)Some(i) 匹配吗?当然匹配!它们是相同的成员。i 绑定了 Some 中包含的值,所以 i 的值是 5。接着匹配分支的代码被执行,所以我们将 i 的值加一并返回一个含有值 6 的新 Some

接着考虑下示例 6-5 中 plus_one 的第二个调用,这里 xNone。我们进入 match 并与第一个分支相比较。

fn main() {
    fn plus_one(x: Option<i32>) -> Option<i32> {
        match x {
            None => None,
            Some(i) => Some(i + 1),
        }
    }

    let five = Some(5);
    let six = plus_one(five);
    let none = plus_one(None);
}

匹配上了!这里没有值来加一,所以程序结束并返回 => 右侧的值 None,因为第一个分支就匹配到了,其他的分支将不再比较。

match 与枚举相结合在很多场景中都是有用的。你会在 Rust 代码中看到很多这样的模式:match 一个枚举,绑定其中的值到一个变量,接着根据其值执行代码。这在一开始有点复杂,不过一旦习惯了,你会希望所有语言都拥有它!这一直是用户的最爱。

匹配是穷尽的

match 还有另一方面需要讨论:这些分支必须覆盖了所有的可能性。考虑一下 plus_one 函数的这个版本,它有一个 bug 并不能编译:

fn main() {
    fn plus_one(x: Option<i32>) -> Option<i32> {
        match x {
            Some(i) => Some(i + 1),
        }
    }

    let five = Some(5);
    let six = plus_one(five);
    let none = plus_one(None);
}

我们没有处理 None 的情况,所以这些代码会造成一个 bug。幸运的是,这是一个 Rust 知道如何处理的 bug。如果尝试编译这段代码,会得到这个错误:

$ cargo run
   Compiling enums v0.1.0 (file:///projects/enums)
error[E0004]: non-exhaustive patterns: `None` not covered
 --> src/main.rs:3:15
  |
3 |         match x {
  |               ^ pattern `None` not covered
  |
note: `Option<i32>` defined here
  = note: the matched value is of type `Option<i32>`
help: ensure that all possible cases are being handled by adding a match arm with a wildcard pattern or an explicit pattern as shown
  |
4 ~             Some(i) => Some(i + 1),
5 ~             None => todo!(),
  |

For more information about this error, try `rustc --explain E0004`.
error: could not compile `enums` due to previous error

Rust 知道我们没有覆盖所有可能的情况甚至知道哪些模式被忘记了!Rust 中的匹配是 穷尽的exhaustive):必须穷举到最后的可能性来使代码有效。特别的在这个 Option<T> 的例子中,Rust 防止我们忘记明确的处理 None 的情况,这让我们免于假设拥有一个实际上为空的值,从而使之前提到的价值亿万的错误不可能发生。

通配模式和 _ 占位符

让我们看一个例子,我们希望对一些特定的值采取特殊操作,而对其他的值采取默认操作。想象我们正在玩一个游戏,如果你掷出骰子的值为 3,角色不会移动,而是会得到一顶新奇的帽子。如果你掷出了 7,你的角色将失去新奇的帽子。对于其他的数值,你的角色会在棋盘上移动相应的格子。这是一个实现了上述逻辑的 match,骰子的结果是硬编码而不是一个随机值,其他的逻辑部分使用了没有函数体的函数来表示,实现它们超出了本例的范围:

fn main() {
    let dice_roll = 9;
    match dice_roll {
        3 => add_fancy_hat(),
        7 => remove_fancy_hat(),
        other => move_player(other),
    }

    fn add_fancy_hat() {}
    fn remove_fancy_hat() {}
    fn move_player(num_spaces: u8) {}
}

对于前两个分支,匹配模式是字面值 37,最后一个分支则涵盖了所有其他可能的值,模式是我们命名为 other 的一个变量。other 分支的代码通过将其传递给 move_player 函数来使用这个变量。

即使我们没有列出 u8 所有可能的值,这段代码依然能够编译,因为最后一个模式将匹配所有未被特殊列出的值。这种通配模式满足了 match 必须被穷尽的要求。请注意,我们必须将通配分支放在最后,因为模式是按顺序匹配的。如果我们在通配分支后添加其他分支,Rust 将会警告我们,因为此后的分支永远不会被匹配到。

Rust 还提供了一个模式,当我们不想使用通配模式获取的值时,请使用 _ ,这是一个特殊的模式,可以匹配任意值而不绑定到该值。这告诉 Rust 我们不会使用这个值,所以 Rust 也不会警告我们存在未使用的变量。

让我们改变游戏规则:现在,当你掷出的值不是 3 或 7 的时候,你必须再次掷出。这种情况下我们不需要使用这个值,所以我们改动代码使用 _ 来替代变量 other

fn main() {
    let dice_roll = 9;
    match dice_roll {
        3 => add_fancy_hat(),
        7 => remove_fancy_hat(),
        _ => reroll(),
    }

    fn add_fancy_hat() {}
    fn remove_fancy_hat() {}
    fn reroll() {}
}

这个例子也满足穷举性要求,因为我们在最后一个分支中明确地忽略了其他的值。我们没有忘记处理任何东西。

最后,让我们再次改变游戏规则,如果你掷出 3 或 7 以外的值,你的回合将无事发生。我们可以使用单元值(在“元组类型”一节中提到的空元组)作为 _ 分支的代码:

fn main() {
    let dice_roll = 9;
    match dice_roll {
        3 => add_fancy_hat(),
        7 => remove_fancy_hat(),
        _ => (),
    }

    fn add_fancy_hat() {}
    fn remove_fancy_hat() {}
}

在这里,我们明确告诉 Rust 我们不会使用与前面模式不匹配的值,并且这种情况下我们不想运行任何代码。

我们将在第 18 章中介绍更多关于模式和匹配的内容。现在,让我们继续讨论 if let 语法,这在 match 表达式有点啰嗦的情况下很有用。

if let 简洁控制流

ch06-03-if-let.md
commit bb7e429ad6b59d9a0c37db7434976364cbb9c6da

if let 语法让我们以一种不那么冗长的方式结合 iflet,来处理只匹配一个模式的值而忽略其他模式的情况。考虑示例 6-6 中的程序,它匹配一个 config_max 变量中的 Option<u8> 值并只希望当值为 Some 成员时执行代码:

fn main() {
    let config_max = Some(3u8);
    match config_max {
        Some(max) => println!("The maximum is configured to be {}", max),
        _ => (),
    }
}

示例 6-6:match 只关心当值为 Some 时执行代码

如果值是 Some,我们希望打印出 Some 成员中的值,这个值被绑定到模式中的 max 变量里。对于 None 值我们不希望做任何操作。为了满足 match 表达式(穷尽性)的要求,必须在处理完这唯一的成员后加上 _ => (),这样也要增加很多烦人的样板代码。

不过我们可以使用 if let 这种更短的方式编写。如下代码与示例 6-6 中的 match 行为一致:

fn main() {
    let config_max = Some(3u8);
    if let Some(max) = config_max {
        println!("The maximum is configured to be {}", max);
    }
}

if let 语法获取通过等号分隔的一个模式和一个表达式。它的工作方式与 match 相同,这里的表达式对应 match 而模式则对应第一个分支。在这个例子中,模式是 Some(max)max 绑定为 Some 中的值。接着可以在 if let 代码块中使用 max 了,就跟在对应的 match 分支中一样。模式不匹配时 if let 块中的代码不会执行。

使用 if let 意味着编写更少代码,更少的缩进和更少的样板代码。然而,这样会失去 match 强制要求的穷尽性检查。matchif let 之间的选择依赖特定的环境以及增加简洁度和失去穷尽性检查的权衡取舍。

换句话说,可以认为 if letmatch 的一个语法糖,它当值匹配某一模式时执行代码而忽略所有其他值。

可以在 if let 中包含一个 elseelse 块中的代码与 match 表达式中的 _ 分支块中的代码相同,这样的 match 表达式就等同于 if letelse。回忆一下示例 6-4 中 Coin 枚举的定义,其 Quarter 成员也包含一个 UsState 值。如果想要计数所有不是 25 美分的硬币的同时也报告 25 美分硬币所属的州,可以使用这样一个 match 表达式:

#[derive(Debug)]
enum UsState {
    Alabama,
    Alaska,
    // --snip--
}

enum Coin {
    Penny,
    Nickel,
    Dime,
    Quarter(UsState),
}

fn main() {
    let coin = Coin::Penny;
    let mut count = 0;
    match coin {
        Coin::Quarter(state) => println!("State quarter from {:?}!", state),
        _ => count += 1,
    }
}

或者可以使用这样的 if letelse 表达式:

#[derive(Debug)]
enum UsState {
    Alabama,
    Alaska,
    // --snip--
}

enum Coin {
    Penny,
    Nickel,
    Dime,
    Quarter(UsState),
}

fn main() {
    let coin = Coin::Penny;
    let mut count = 0;
    if let Coin::Quarter(state) = coin {
        println!("State quarter from {:?}!", state);
    } else {
        count += 1;
    }
}

如果你的程序遇到一个使用 match 表达起来过于啰嗦的逻辑,记住 if let 也在你的 Rust 工具箱中。

总结

现在我们涉及到了如何使用枚举来创建有一系列可列举值的自定义类型。我们也展示了标准库的 Option<T> 类型是如何帮助你利用类型系统来避免出错的。当枚举值包含数据时,你可以根据需要处理多少情况来选择使用 matchif let 来获取并使用这些值。

你的 Rust 程序现在能够使用结构体和枚举在自己的作用域内表现其内容了。在你的 API 中使用自定义类型保证了类型安全:编译器会确保你的函数只会得到它期望的类型的值。

为了向你的用户提供一个组织良好的 API,它使用起来很直观并且只向用户暴露他们确实需要的部分,那么现在就让我们转向 Rust 的模块系统吧。

使用包、Crate 和模块管理不断增长的项目

ch07-00-managing-growing-projects-with-packages-crates-and-modules.md
commit c77d7a1279dbc7a9d76e80c5ac9d742dd529538c

当你编写大型程序时,组织你的代码显得尤为重要。通过对相关功能进行分组和划分不同功能的代码,你可以清楚在哪里可以找到实现了特定功能的代码,以及在哪里可以改变一个功能的工作方式。

到目前为止,我们编写的程序都在一个文件的一个模块中。伴随着项目的增长,你应该通过将代码分解为多个模块和多个文件来组织代码。一个包可以包含多个二进制 crate 项和一个可选的 crate 库。伴随着包的增长,你可以将包中的部分代码提取出来,做成独立的 crate,这些 crate 则作为外部依赖项。本章将会涵盖所有这些概念。对于一个由一系列相互关联的包组成的超大型项目,Cargo 提供了 “工作空间” 这一功能,我们将在第十四章的 “Cargo Workspaces” 对此进行讲解。

我们也会讨论封装来实现细节,这可以使你更高级地重用代码:你实现了一个操作后,其他的代码可以通过该代码的公共接口来进行调用,而不需要知道它是如何实现的。你在编写代码时可以定义哪些部分是其他代码可以使用的公共部分,以及哪些部分是你有权更改实现细节的私有部分。这是另一种减少你在脑海中记住项目内容数量的方法。

这里有一个需要说明的概念 “作用域(scope)”:代码所在的嵌套上下文有一组定义为 “in scope” 的名称。当阅读、编写和编译代码时,程序员和编译器需要知道特定位置的特定名称是否引用了变量、函数、结构体、枚举、模块、常量或者其他有意义的项。你可以创建作用域,以及改变哪些名称在作用域内还是作用域外。同一个作用域内不能拥有两个相同名称的项;可以使用一些工具来解决名称冲突。

Rust 有许多功能可以让你管理代码的组织,包括哪些内容可以被公开,哪些内容作为私有部分,以及程序每个作用域中的名字。这些功能,有时被统称为 “模块系统(the module system)”,包括:

  • Packages):Cargo 的一个功能,它允许你构建、测试和分享 crate。
  • Crates :一个模块的树形结构,它形成了库或二进制项目。
  • 模块Modules)和 use:允许你控制作用域和路径的私有性。
  • 路径path):一个命名例如结构体、函数或模块等项的方式

本章将会涵盖所有这些概念,讨论它们如何交互,并说明如何使用它们来管理作用域。到最后,你会对模块系统有深入的了解,并且能够像专业人士一样使用作用域!

包和 Crate

ch07-01-packages-and-crates.md
commit c77d7a1279dbc7a9d76e80c5ac9d742dd529538c

模块系统的第一部分,我们将介绍包和 crate。

crate 是 Rust 在编译时最小的代码单位。如果你用 rustc 而不是 cargo 来编译一个文件(第一章我们这么做过),编译器还是会将那个文件认作一个 crate。crate 可以包含模块,模块可以定义在其他文件,然后和 crate 一起编译,我们会在接下来的章节中遇到。

crate 有两种形式:二进制项和库。二进制项 可以被编译为可执行程序,比如一个命令行程序或者一个服务器。它们必须有一个 main 函数来定义当程序被执行的时候所需要做的事情。目前我们所创建的 crate 都是二进制项。

并没有 main 函数,它们也不会编译为可执行程序,它们提供一些诸如函数之类的东西,使其他项目也能使用这些东西。比如 第二章rand crate 就提供了生成随机数的东西。大多数时间 Rustaceans 说的 crate 指的都是库,这与其他编程语言中 library 概念一致。

crate root 是一个源文件,Rust 编译器以它为起始点,并构成你的 crate 的根模块(我们将在 “定义模块来控制作用域与私有性” 一节深入解读)。

package)是提供一系列功能的一个或者多个 crate。一个包会包含一个 Cargo.toml 文件,阐述如何去构建这些 crate。Cargo 就是一个包含构建你代码的二进制项的包。Cargo 也包含这些二进制项所依赖的库。其他项目也能用 Cargo 库来实现与 Cargo 命令行程序一样的逻辑。

包中可以包含至多一个库 crate(library crate)。包中可以包含任意多个二进制 crate(binary crate),但是必须至少包含一个 crate(无论是库的还是二进制的)。

让我们来看看创建包的时候会发生什么。首先,我们输入命令 cargo new

$ cargo new my-project
     Created binary (application) `my-project` package
$ ls my-project
Cargo.toml
src
$ ls my-project/src
main.rs

运行了这条命令后,我们先用 ls (译者注:此命令为 Linux 平台的指令,Windows 下可用 dir)来看看 Cargo 给我们创建了什么,Cargo 会给我们的包创建一个 Cargo.toml 文件。查看 Cargo.toml 的内容,会发现并没有提到 src/main.rs,因为 Cargo 遵循的一个约定:src/main.rs 就是一个与包同名的二进制 crate 的 crate 根。同样的,Cargo 知道如果包目录中包含 src/lib.rs,则包带有与其同名的库 crate,且 src/lib.rs 是 crate 根。crate 根文件将由 Cargo 传递给 rustc 来实际构建库或者二进制项目。

在此,我们有了一个只包含 src/main.rs 的包,意味着它只含有一个名为 my-project 的二进制 crate。如果一个包同时含有 src/main.rssrc/lib.rs,则它有两个 crate:一个二进制的和一个库的,且名字都与包相同。通过将文件放在 src/bin 目录下,一个包可以拥有多个二进制 crate:每个 src/bin 下的文件都会被编译成一个独立的二进制 crate。

定义模块来控制作用域与私有性

ch07-02-defining-modules-to-control-scope-and-privacy.md
commit 310ea6cb0dd855eaf510c9ba05648bc5836ead0c

在本节,我们将讨论模块和其它一些关于模块系统的部分,如允许你命名项的 路径paths);用来将路径引入作用域的 use 关键字;以及使项变为公有的 pub 关键字。我们还将讨论 as 关键字、外部包和 glob 运算符。现在,让我们把注意力放在模块上!

首先,我们将从一系列的规则开始,在你未来组织代码的时候,这些规则可被用作简单的参考。接下来我们将会详细的解释每条规则。

模块小抄

这里我们提供一个简单的参考,用来解释模块、路径、use关键词和pub关键词如何在编译器中工作,以及大部分开发者如何组织他们的代码。我们将在本章节中举例说明每条规则,不过这是一个解释模块工作方式的良好参考。

  • 从 crate 根节点开始: 当编译一个 crate, 编译器首先在 crate 根文件(通常,对于一个库 crate 而言是src/lib.rs,对于一个二进制 crate 而言是src/main.rs)中寻找需要被编译的代码。
  • 声明模块: 在 crate 根文件中,你可以声明一个新模块;比如,你用mod garden声明了一个叫做garden的模块。编译器会在下列路径中寻找模块代码:
    • 内联,在大括号中,当mod garden后方不是一个分号而是一个大括号
    • 在文件 src/garden.rs
    • 在文件 src/garden/mod.rs
  • 声明子模块: 在除了 crate 根节点以外的其他文件中,你可以定义子模块。比如,你可能在src/garden.rs中定义了mod vegetables;。编译器会在以父模块命名的目录中寻找子模块代码:
    • 内联,在大括号中,当mod vegetables后方不是一个分号而是一个大括号
    • 在文件 src/garden/vegetables.rs
    • 在文件 src/garden/vegetables/mod.rs
  • 模块中的代码路径: 一旦一个模块是你 crate 的一部分,你可以在隐私规则允许的前提下,从同一个 crate 内的任意地方,通过代码路径引用该模块的代码。举例而言,一个 garden vegetables 模块下的Asparagus类型可以在crate::garden::vegetables::Asparagus被找到。
  • 私有 vs 公用: 一个模块里的代码默认对其父模块私有。为了使一个模块公用,应当在声明时使用pub mod替代mod。为了使一个公用模块内部的成员公用,应当在声明前使用pub
  • use 关键字: 在一个作用域内,use关键字创建了一个成员的快捷方式,用来减少长路径的重复。在任何可以引用crate::garden::vegetables::Asparagus的作用域,你可以通过 use crate::garden::vegetables::Asparagus;创建一个快捷方式,然后你就可以在作用域中只写Asparagus来使用该类型。

这里我们创建一个名为backyard的二进制 crate 来说明这些规则。该 crate 的路径同样命名为backyard,该路径包含了这些文件和目录:

backyard
├── Cargo.lock
├── Cargo.toml
└── src
    ├── garden
    │   └── vegetables.rs
    ├── garden.rs
    └── main.rs

这个例子中的 crate 根文件是src/main.rs,该文件包括了:

文件名:src/main.rs

use crate::garden::vegetables::Asparagus;

pub mod garden;

fn main() {
    let plant = Asparagus {};
    println!("I'm growing {:?}!", plant);
}

pub mod garden;行告诉编译器应该包含在src/garden.rs文件中发现的代码:

文件名:src/garden.rs

pub mod vegetables;

在此处, pub mod vegetables;意味着在src/garden/vegetables.rs中的代码也应该被包括。这些代码是:

#[derive(Debug)]
pub struct Asparagus {}

现在让我们深入了解这些规则的细节并在实际中演示它们!

在模块中对相关代码进行分组

模块 让我们可以将一个 crate 中的代码进行分组,以提高可读性与重用性。因为一个模块中的代码默认是私有的,所以还可以利用模块控制项的 私有性。私有项是不可为外部使用的内在详细实现。我们也可以将模块和它其中的项标记为公开的,这样,外部代码就可以使用并依赖与它们。

在餐饮业,餐馆中会有一些地方被称之为 前台front of house),还有另外一些地方被称之为 后台back of house)。前台是招待顾客的地方,在这里,店主可以为顾客安排座位,服务员接受顾客下单和付款,调酒师会制作饮品。后台则是由厨师工作的厨房,洗碗工的工作地点,以及经理做行政工作的地方组成。

我们可以将函数放置到嵌套的模块中,来使我们的 crate 结构与实际的餐厅结构相同。通过执行 cargo new --lib restaurant,来创建一个新的名为 restaurant 的库。然后将示例 7-1 中所罗列出来的代码放入 src/lib.rs 中,来定义一些模块和函数。

文件名:src/lib.rs

mod front_of_house {
    mod hosting {
        fn add_to_waitlist() {}

        fn seat_at_table() {}
    }

    mod serving {
        fn take_order() {}

        fn serve_order() {}

        fn take_payment() {}
    }
}

示例 7-1:一个包含了其他内置了函数的模块的 front_of_house 模块

我们定义一个模块,是以 mod 关键字为起始,然后指定模块的名字(本例中叫做 front_of_house),并且用花括号包围模块的主体。在模块内,我们还可以定义其他的模块,就像本例中的 hostingserving 模块。模块还可以保存一些定义的其他项,比如结构体、枚举、常量、特性、或者函数。

通过使用模块,我们可以将相关的定义分组到一起,并指出它们为什么相关。程序员可以通过使用这段代码,更加容易地找到他们想要的定义,因为他们可以基于分组来对代码进行导航,而不需要阅读所有的定义。程序员向这段代码中添加一个新的功能时,他们也会知道代码应该放置在何处,可以保持程序的组织性。

在前面我们提到了,src/main.rssrc/lib.rs 叫做 crate 根。之所以这样叫它们是因为这两个文件的内容都分别在 crate 模块结构的根组成了一个名为 crate 的模块,该结构被称为 模块树module tree)。

示例 7-2 展示了示例 7-1 中的模块树的结构。

crate
 └── front_of_house
     ├── hosting
     │   ├── add_to_waitlist
     │   └── seat_at_table
     └── serving
         ├── take_order
         ├── serve_order
         └── take_payment

示例 7-2: 示例 7-1 中代码的模块树

这个树展示了一些模块是如何被嵌入到另一个模块的(例如,hosting 嵌套在 front_of_house 中)。这个树还展示了一些模块是互为 兄弟siblings)的,这意味着它们定义在同一模块中(hostingserving 被一起定义在 front_of_house 中)。继续沿用家庭关系的比喻,如果一个模块 A 被包含在模块 B 中,我们将模块 A 称为模块 B 的 child),模块 B 则是模块 A 的 parent)。注意,整个模块树都植根于名为 crate 的隐式模块下。

这个模块树可能会令你想起电脑上文件系统的目录树;这是一个非常恰当的类比!就像文件系统的目录,你可以使用模块来组织你的代码。并且,就像目录中的文件,我们需要一种方法来找到模块。

引用模块项目的路径

ch07-03-paths-for-referring-to-an-item-in-the-module-tree.md
commit 2b4565662d1a7973d870744a923f58f8f7dcce91

来看一下 Rust 如何在模块树中找到一个项的位置,我们使用路径的方式,就像在文件系统使用路径一样。为了调用一个函数,我们需要知道它的路径。

路径有两种形式:

  • 绝对路径absolute path)是以 crate 根(root)开头的全路径;对于外部 crate 的代码,是以 crate 名开头的绝对路径,对于当前 crate 的代码,则以字面值 crate 开头。
  • 相对路径relative path)从当前模块开始,以 selfsuper 或当前模块的标识符开头。

绝对路径和相对路径都后跟一个或多个由双冒号(::)分割的标识符。

回到示例 7-1,假设我们希望调用 add_to_waitlist 函数。还是同样的问题,add_to_waitlist 函数的路径是什么?在示例 7-3 中删除了一些模块和函数。

我们在 crate 根定义了一个新函数 eat_at_restaurant,并在其中展示调用 add_to_waitlist 函数的两种方法。eat_at_restaurant 函数是我们 crate 库的一个公共 API,所以我们使用 pub 关键字来标记它。在 “使用 pub 关键字暴露路径” 一节,我们将详细介绍 pub。注意,这个例子无法编译通过,我们稍后会解释原因。

文件名:src/lib.rs

mod front_of_house {
    mod hosting {
        fn add_to_waitlist() {}
    }
}

pub fn eat_at_restaurant() {
    // 绝对路径
    crate::front_of_house::hosting::add_to_waitlist();

    // 相对路径
    front_of_house::hosting::add_to_waitlist();
}

示例 7-3: 使用绝对路径和相对路径来调用 add_to_waitlist 函数

第一种方式,我们在 eat_at_restaurant 中调用 add_to_waitlist 函数,使用的是绝对路径。add_to_waitlist 函数与 eat_at_restaurant 被定义在同一 crate 中,这意味着我们可以使用 crate 关键字为起始的绝对路径。

crate 后面,我们持续地嵌入模块,直到我们找到 add_to_waitlist。你可以想象出一个相同结构的文件系统,我们通过指定路径 /front_of_house/hosting/add_to_waitlist 来执行 add_to_waitlist 程序。我们使用 crate 从 crate 根开始就类似于在 shell 中使用 / 从文件系统根开始。

第二种方式,我们在 eat_at_restaurant 中调用 add_to_waitlist,使用的是相对路径。这个路径以 front_of_house 为起始,这个模块在模块树中,与 eat_at_restaurant 定义在同一层级。与之等价的文件系统路径就是 front_of_house/hosting/add_to_waitlist。以模块名开头意味着该路径是相对路径。

选择使用相对路径还是绝对路径,要取决于你的项目,也取决于你是更倾向于将项的定义代码与使用该项的代码分开来移动,还是一起移动。举一个例子,如果我们要将 front_of_house 模块和 eat_at_restaurant 函数一起移动到一个名为 customer_experience 的模块中,我们需要更新 add_to_waitlist 的绝对路径,但是相对路径还是可用的。然而,如果我们要将 eat_at_restaurant 函数单独移到一个名为 dining 的模块中,还是可以使用原本的绝对路径来调用 add_to_waitlist,但是相对路径必须要更新。我们更倾向于使用绝对路径,因为把代码定义和项调用各自独立地移动是更常见的。

让我们试着编译一下示例 7-3,并查明为何不能编译!示例 7-4 展示了这个错误。

$ cargo build
   Compiling restaurant v0.1.0 (file:///projects/restaurant)
error[E0603]: module `hosting` is private
 --> src/lib.rs:9:28
  |
9 |     crate::front_of_house::hosting::add_to_waitlist();
  |                            ^^^^^^^ private module
  |
note: the module `hosting` is defined here
 --> src/lib.rs:2:5
  |
2 |     mod hosting {
  |     ^^^^^^^^^^^

error[E0603]: module `hosting` is private
  --> src/lib.rs:12:21
   |
12 |     front_of_house::hosting::add_to_waitlist();
   |                     ^^^^^^^ private module
   |
note: the module `hosting` is defined here
  --> src/lib.rs:2:5
   |
2  |     mod hosting {
   |     ^^^^^^^^^^^

For more information about this error, try `rustc --explain E0603`.
error: could not compile `restaurant` due to 2 previous errors

示例 7-4: 构建示例 7-3 出现的编译器错误

错误信息说 hosting 模块是私有的。换句话说,我们拥有 hosting 模块和 add_to_waitlist 函数的正确路径,但是 Rust 不让我们使用,因为它不能访问私有片段。在 Rust 中,默认所有项(函数、方法、结构体、枚举、模块和常量)对父模块都是私有的。如果希望创建一个私有函数或结构体,你可以将其放入一个模块。

父模块中的项不能使用子模块中的私有项,但是子模块中的项可以使用它们父模块中的项。这是因为子模块封装并隐藏了它们的实现详情,但是子模块可以看到它们定义的上下文。继续拿餐馆作比喻,把私有性规则想象成餐馆的后台办公室:餐馆内的事务对餐厅顾客来说是不可知的,但办公室经理可以洞悉其经营的餐厅并在其中做任何事情。

Rust 选择以这种方式来实现模块系统功能,因此默认隐藏内部实现细节。这样一来,你就知道可以更改内部代码的哪些部分而不会破坏外部代码。不过 Rust 也确实提供了通过使用 pub 关键字来创建公共项,使子模块的内部部分暴露给上级模块。

使用 pub 关键字暴露路径

让我们回头看一下示例 7-4 的错误,它告诉我们 hosting 模块是私有的。我们想让父模块中的 eat_at_restaurant 函数可以访问子模块中的 add_to_waitlist 函数,因此我们使用 pub 关键字来标记 hosting 模块,如示例 7-5 所示。

文件名:src/lib.rs

mod front_of_house {
    pub mod hosting {
        fn add_to_waitlist() {}
    }
}

pub fn eat_at_restaurant() {
    // 绝对路径
    crate::front_of_house::hosting::add_to_waitlist();

    // 相对路径
    front_of_house::hosting::add_to_waitlist();
}

示例 7-5: 使用 pub 关键字声明 hosting 模块使其可在 eat_at_restaurant 使用

不幸的是,示例 7-5 的代码编译仍然有错误,如示例 7-6 所示。

$ cargo build
   Compiling restaurant v0.1.0 (file:///projects/restaurant)
error[E0603]: function `add_to_waitlist` is private
 --> src/lib.rs:9:37
  |
9 |     crate::front_of_house::hosting::add_to_waitlist();
  |                                     ^^^^^^^^^^^^^^^ private function
  |
note: the function `add_to_waitlist` is defined here
 --> src/lib.rs:3:9
  |
3 |         fn add_to_waitlist() {}
  |         ^^^^^^^^^^^^^^^^^^^^

error[E0603]: function `add_to_waitlist` is private
  --> src/lib.rs:12:30
   |
12 |     front_of_house::hosting::add_to_waitlist();
   |                              ^^^^^^^^^^^^^^^ private function
   |
note: the function `add_to_waitlist` is defined here
  --> src/lib.rs:3:9
   |
3  |         fn add_to_waitlist() {}
   |         ^^^^^^^^^^^^^^^^^^^^

For more information about this error, try `rustc --explain E0603`.
error: could not compile `restaurant` due to 2 previous errors

示例 7-6: 构建示例 7-5 出现的编译器错误

发生了什么?在 mod hosting 前添加了 pub 关键字,使其变成公有的。伴随着这种变化,如果我们可以访问 front_of_house,那我们也可以访问 hosting。但是 hosting内容contents)仍然是私有的;这表明使模块公有并不使其内容也是公有的。模块上的 pub 关键字只允许其父模块引用它,而不允许访问内部代码。因为模块是一个容器,只是将模块变为公有能做的其实并不太多;同时需要更深入地选择将一个或多个项变为公有。

示例 7-6 中的错误说,add_to_waitlist 函数是私有的。私有性规则不但应用于模块,还应用于结构体、枚举、函数和方法。

让我们继续将 pub 关键字放置在 add_to_waitlist 函数的定义之前,使其变成公有。如示例 7-7 所示。

文件名:src/lib.rs

mod front_of_house {
    pub mod hosting {
        pub fn add_to_waitlist() {}
    }
}

pub fn eat_at_restaurant() {
    // 绝对路径
    crate::front_of_house::hosting::add_to_waitlist();

    // 相对路径
    front_of_house::hosting::add_to_waitlist();
}

示例 7-7: 为 mod hostingfn add_to_waitlist 添加 pub 关键字使它们可以在 eat_at_restaurant 函数中被调用

现在代码可以编译通过了!为了了解为何增加 pub 关键字使得我们可以在 add_to_waitlist 中调用这些路径与私有性规则有关,让我们看看绝对路径和相对路径。

在绝对路径,我们从 crate 也就是 crate 根开始。crate 根中定义了 front_of_house 模块。虽然 front_of_house 模块不是公有的,不过因为 eat_at_restaurant 函数与 front_of_house 定义于同一模块中(即,eat_at_restaurantfront_of_house 是兄弟),我们可以从 eat_at_restaurant 中引用 front_of_house。接下来是使用 pub 标记的 hosting 模块。我们可以访问 hosting 的父模块,所以可以访问 hosting。最后,add_to_waitlist 函数被标记为 pub ,我们可以访问其父模块,所以这个函数调用是有效的!

在相对路径,其逻辑与绝对路径相同,除了第一步:不同于从 crate 根开始,路径从 front_of_house 开始。front_of_house 模块与 eat_at_restaurant 定义于同一模块,所以从 eat_at_restaurant 中开始定义的该模块相对路径是有效的。接下来因为 hostingadd_to_waitlist 被标记为 pub,路径其余的部分也是有效的,因此函数调用也是有效的!

如果你计划共享你的库 crate 以便其它项目可以使用你的代码,公有 API 将是决定 crate 用户如何与你代码交互的契约。关于管理公有 API 的修改以便被人更容易依赖你的库有着很多考量。这些考量超出了本书的范畴;如果你对这些话题感兴趣,请查阅 The Rust API Guidelines

二进制和库 crate 包的最佳实践

我们提到过包可以同时包含一个 src/main.rs 二进制 crate 根和一个 src/lib.rs 库 crate 根,并且这两个 crate 默认以包名来命名。通常,这种包含二进制 crate 和库 crate 的模式的包,在二进制 crate 中只有足够的代码来启动一个可执行文件,可执行文件调用库 crate 的代码。又因为库 crate 可以共享,这使得其它项目从包提供的大部分功能中受益。

模块树应该定义在 src/lib.rs 中。这样通过以包名开头的路径,公有项就可以在二进制 crate 中使用。二进制 crate 就完全变成了同其它 外部 crate 一样的库 crate 的用户:它只能使用公有 API。这有助于你设计一个好的 API;你不仅仅是作者,也是用户! 在第十二章我们会通过一个同时包含二进制 crate 和库 crate 的命令行程序来展示这些包组织上的实践。

super 开始的相对路径

我们可以通过在路径的开头使用 super ,从父模块开始构建相对路径,而不是从当前模块或者 crate 根开始。这类似以 .. 语法开始一个文件系统路径。使用 super 允许我们引用父模块中的已知项,这使得重新组织模块树变得更容易 —— 当模块与父模块关联的很紧密,但某天父模块可能要移动到模块树的其它位置。

考虑一下示例 7-8 中的代码,它模拟了厨师更正了一个错误订单,并亲自将其提供给客户的情况。back_of_house 模块中的定义的 fix_incorrect_order 函数通过指定的 super 起始的 serve_order 路径,来调用父模块中的 deliver_order 函数:

文件名:src/lib.rs

fn deliver_order() {}

mod back_of_house {
    fn fix_incorrect_order() {
        cook_order();
        super::deliver_order();
    }

    fn cook_order() {}
}

示例 7-8: 使用以 super 开头的相对路径从父目录开始调用函数

fix_incorrect_order 函数在 back_of_house 模块中,所以我们可以使用 super 进入 back_of_house 父模块,也就是本例中的 crate 根。在这里,我们可以找到 deliver_order。成功!我们认为 back_of_house 模块和 deliver_order 函数之间可能具有某种关联关系,并且,如果我们要重新组织这个 crate 的模块树,需要一起移动它们。因此,我们使用 super,这样一来,如果这些代码被移动到了其他模块,我们只需要更新很少的代码。

创建公有的结构体和枚举

我们还可以使用 pub 来设计公有的结构体和枚举,不过关于在结构体和枚举上使用 pub 还有一些额外的细节需要注意。如果我们在一个结构体定义的前面使用了 pub ,这个结构体会变成公有的,但是这个结构体的字段仍然是私有的。我们可以根据情况决定每个字段是否公有。在示例 7-9 中,我们定义了一个公有结构体 back_of_house:Breakfast,其中有一个公有字段 toast 和私有字段 seasonal_fruit。这个例子模拟的情况是,在一家餐馆中,顾客可以选择随餐附赠的面包类型,但是厨师会根据季节和库存情况来决定随餐搭配的水果。餐馆可用的水果变化是很快的,所以顾客不能选择水果,甚至无法看到他们将会得到什么水果。

文件名:src/lib.rs

mod back_of_house {
    pub struct Breakfast {
        pub toast: String,
        seasonal_fruit: String,
    }

    impl Breakfast {
        pub fn summer(toast: &str) -> Breakfast {
            Breakfast {
                toast: String::from(toast),
                seasonal_fruit: String::from("peaches"),
            }
        }
    }
}

pub fn eat_at_restaurant() {
    // 在夏天订购一个黑麦土司作为早餐
    let mut meal = back_of_house::Breakfast::summer("Rye");
    // 改变主意更换想要面包的类型
    meal.toast = String::from("Wheat");
    println!("I'd like {} toast please", meal.toast);

    // 如果取消下一行的注释代码不能编译;
    // 不允许查看或修改早餐附带的季节水果
    // meal.seasonal_fruit = String::from("blueberries");
}

示例 7-9: 带有公有和私有字段的结构体

因为 back_of_house::Breakfast 结构体的 toast 字段是公有的,所以我们可以在 eat_at_restaurant 中使用点号来随意的读写 toast 字段。注意,我们不能在 eat_at_restaurant 中使用 seasonal_fruit 字段,因为 seasonal_fruit 是私有的。尝试去除那一行修改 seasonal_fruit 字段值的代码的注释,看看你会得到什么错误!

还请注意一点,因为 back_of_house::Breakfast 具有私有字段,所以这个结构体需要提供一个公共的关联函数来构造 Breakfast 的实例 (这里我们命名为 summer)。如果 Breakfast 没有这样的函数,我们将无法在 eat_at_restaurant 中创建 Breakfast 实例,因为我们不能在 eat_at_restaurant 中设置私有字段 seasonal_fruit 的值。

与之相反,如果我们将枚举设为公有,则它的所有成员都将变为公有。我们只需要在 enum 关键字前面加上 pub,就像示例 7-10 展示的那样。

文件名:src/lib.rs

mod back_of_house {
    pub enum Appetizer {
        Soup,
        Salad,
    }
}

pub fn eat_at_restaurant() {
    let order1 = back_of_house::Appetizer::Soup;
    let order2 = back_of_house::Appetizer::Salad;
}

示例 7-10: 设计公有枚举,使其所有成员公有

因为我们创建了名为 Appetizer 的公有枚举,所以我们可以在 eat_at_restaurant 中使用 SoupSalad 成员。

如果枚举成员不是公有的,那么枚举会显得用处不大;给枚举的所有成员挨个添加 pub 是很令人恼火的,因此枚举成员默认就是公有的。结构体通常使用时,不必将它们的字段公有化,因此结构体遵循常规,内容全部是私有的,除非使用 pub 关键字。

还有一种使用 pub 的场景我们还没有涉及到,那就是我们最后要讲的模块功能:use 关键字。我们将先单独介绍 use,然后展示如何结合使用 pubuse

使用 use 关键字将路径引入作用域

ch07-04-bringing-paths-into-scope-with-the-use-keyword.md
commit c77d7a1279dbc7a9d76e80c5ac9d742dd529538c

不得不编写路径来调用函数显得不便且重复。在示例 7-7 中,无论我们选择 add_to_waitlist 函数的绝对路径还是相对路径,每次我们想要调用 add_to_waitlist 时,都必须指定front_of_househosting。幸运的是,有一种方法可以简化这个过程。我们可以使用 use 关键字创建一个短路径,然后就可以在作用域中的任何地方使用这个更短的名字。

在示例 7-11 中,我们将 crate::front_of_house::hosting 模块引入了 eat_at_restaurant 函数的作用域,而我们只需要指定 hosting::add_to_waitlist 即可在 eat_at_restaurant 中调用 add_to_waitlist 函数。

文件名:src/lib.rs

mod front_of_house {
    pub mod hosting {
        pub fn add_to_waitlist() {}
    }
}

use crate::front_of_house::hosting;

pub fn eat_at_restaurant() {
    hosting::add_to_waitlist();
}

示例 7-11: 使用 use 将模块引入作用域

在作用域中增加 use 和路径类似于在文件系统中创建软连接(符号连接,symbolic link)。通过在 crate 根增加 use crate::front_of_house::hosting,现在 hosting 在作用域中就是有效的名称了,如同 hosting 模块被定义于 crate 根一样。通过 use 引入作用域的路径也会检查私有性,同其它路径一样。

注意 use 只能创建 use 所在的特定作用域内的短路径。示例 7-12 将 eat_at_restaurant 函数移动到了一个叫 customer 的子模块,这又是一个不同于 use 语句的作用域,所以函数体不能编译。

文件名:src/lib.rs

mod front_of_house {
    pub mod hosting {
        pub fn add_to_waitlist() {}
    }
}

use crate::front_of_house::hosting;

mod customer {
    pub fn eat_at_restaurant() {
        hosting::add_to_waitlist();
    }
}

示例 7-12: use 语句只适用于其所在的作用域

编译器错误显示短路径不再适用于 customer 模块中:

$ cargo build
   Compiling restaurant v0.1.0 (file:///projects/restaurant)
error[E0433]: failed to resolve: use of undeclared crate or module `hosting`
  --> src/lib.rs:11:9
   |
11 |         hosting::add_to_waitlist();
   |         ^^^^^^^ use of undeclared crate or module `hosting`

warning: unused import: `crate::front_of_house::hosting`
 --> src/lib.rs:7:5
  |
7 | use crate::front_of_house::hosting;
  |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  |
  = note: `#[warn(unused_imports)]` on by default

For more information about this error, try `rustc --explain E0433`.
warning: `restaurant` (lib) generated 1 warning
error: could not compile `restaurant` due to previous error; 1 warning emitted

注意这里还有一个警告说 use 在其作用域内不再被使用!为了修复这个问题,可以将 use 移动到 customer 模块内,或者在子模块 customer 内通过 super::hosting 引用父模块中的这个短路径。

创建惯用的 use 路径

在示例 7-11 中,你可能会比较疑惑,为什么我们是指定 use crate::front_of_house::hosting ,然后在 eat_at_restaurant 中调用 hosting::add_to_waitlist ,而不是通过指定一直到 add_to_waitlist 函数的 use 路径来得到相同的结果,如示例 7-13 所示。

文件名:src/lib.rs

mod front_of_house {
    pub mod hosting {
        pub fn add_to_waitlist() {}
    }
}

use crate::front_of_house::hosting::add_to_waitlist;

pub fn eat_at_restaurant() {
    add_to_waitlist();
}

示例 7-13: 使用 useadd_to_waitlist 函数引入作用域,这并不符合习惯

虽然示例 7-11 和 7-13 都完成了相同的任务,但示例 7-11 是使用 use 将函数引入作用域的习惯用法。要想使用 use 将函数的父模块引入作用域,我们必须在调用函数时指定父模块,这样可以清晰地表明函数不是在本地定义的,同时使完整路径的重复度最小化。示例 7-13 中的代码不清楚 add_to_waitlist 是在哪里被定义的。

另一方面,使用 use 引入结构体、枚举和其他项时,习惯是指定它们的完整路径。示例 7-14 展示了将 HashMap 结构体引入二进制 crate 作用域的习惯用法。

文件名:src/main.rs

use std::collections::HashMap;

fn main() {
    let mut map = HashMap::new();
    map.insert(1, 2);
}

示例 7-14: 将 HashMap 引入作用域的习惯用法

这种习惯用法背后没有什么硬性要求:它只是一种惯例,人们已经习惯了以这种方式阅读和编写 Rust 代码。

这个习惯用法有一个例外,那就是我们想使用 use 语句将两个具有相同名称的项带入作用域,因为 Rust 不允许这样做。示例 7-15 展示了如何将两个具有相同名称但不同父模块的 Result 类型引入作用域,以及如何引用它们。

文件名:src/lib.rs

use std::fmt;
use std::io;

fn function1() -> fmt::Result {
    // --snip--
    Ok(())
}

fn function2() -> io::Result<()> {
    // --snip--
    Ok(())
}

示例 7-15: 使用父模块将两个具有相同名称的类型引入同一作用域

如你所见,使用父模块可以区分这两个 Result 类型。如果我们是指定 use std::fmt::Resultuse std::io::Result,我们将在同一作用域拥有了两个 Result 类型,当我们使用 Result 时,Rust 则不知道我们要用的是哪个。

使用 as 关键字提供新的名称

使用 use 将两个同名类型引入同一作用域这个问题还有另一个解决办法:在这个类型的路径后面,我们使用 as 指定一个新的本地名称或者别名。示例 7-16 展示了另一个编写示例 7-15 中代码的方法,通过 as 重命名其中一个 Result 类型。

文件名:src/lib.rs

use std::fmt::Result;
use std::io::Result as IoResult;

fn function1() -> Result {
    // --snip--
    Ok(())
}

fn function2() -> IoResult<()> {
    // --snip--
    Ok(())
}

示例 7-16: 使用 as 关键字重命名引入作用域的类型

在第二个 use 语句中,我们选择 IoResult 作为 std::io::Result 的新名称,它与从 std::fmt 引入作用域的 Result 并不冲突。示例 7-15 和示例 7-16 都是惯用的,如何选择都取决于你!

使用 pub use 重导出名称

使用 use 关键字,将某个名称导入当前作用域后,这个名称在此作用域中就可以使用了,但它对此作用域之外还是私有的。如果想让其他人调用我们的代码时,也能够正常使用这个名称,就好像它本来就在当前作用域一样,那我们可以将 pubuse 合起来使用。这种技术被称为 “重导出re-exporting)”:我们不仅将一个名称导入了当前作用域,还允许别人把它导入他们自己的作用域。

示例 7-17 将示例 7-11 根模块中的 use 改为 pub use

文件名:src/lib.rs

mod front_of_house {
    pub mod hosting {
        pub fn add_to_waitlist() {}
    }
}

pub use crate::front_of_house::hosting;

pub fn eat_at_restaurant() {
    hosting::add_to_waitlist();
}

示例 7-17: 通过 pub use 使名称可从新作用域中被导入至任何代码

在这个修改之前,外部代码需要使用路径 restaurant::front_of_house::hosting::add_to_waitlist() 来调用 add_to_waitlist 函数。现在这个 pub use 从根模块重导出了 hosting 模块,外部代码现在可以使用路径 restaurant::hosting::add_to_waitlist

当你代码的内部结构与调用你代码的程序员所想象的结构不同时,重导出会很有用。例如,在这个餐馆的比喻中,经营餐馆的人会想到“前台”和“后台”。但顾客在光顾一家餐馆时,可能不会以这些术语来考虑餐馆的各个部分。使用 pub use,我们可以使用一种结构编写代码,却将不同的结构形式暴露出来。这样做使我们的库井井有条,也使开发这个库的程序员和调用这个库的程序员都更加方便。在“使用 pub use 导出合适的公有 API”部分让我们再看另一个 pub use 的例子来了解这如何影响 crate 的文档。

使用外部包

在第二章中我们编写了一个猜猜看游戏。那个项目使用了一个外部包,rand,来生成随机数。为了在项目中使用 rand,在 Cargo.toml 中加入了如下行:

文件名:Cargo.toml

rand = "0.8.5"

Cargo.toml 中加入 rand 依赖告诉了 Cargo 要从 crates.io 下载 rand 和其依赖,并使其可在项目代码中使用。

接着,为了将 rand 定义引入项目包的作用域,我们加入一行 use 起始的包名,它以 rand 包名开头并列出了需要引入作用域的项。回忆一下第二章的 “生成一个随机数” 部分,我们曾将 Rng trait 引入作用域并调用了 rand::thread_rng 函数:

use std::io;
use rand::Rng;

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");
}

crates.io 上有很多 Rust 社区成员发布的包,将其引入你自己的项目都需要一道相同的步骤:在 Cargo.toml 列出它们并通过 use 将其中定义的项引入项目包的作用域中。

注意 std 标准库对于你的包来说也是外部 crate。因为标准库随 Rust 语言一同分发,无需修改 Cargo.toml 来引入 std,不过需要通过 use 将标准库中定义的项引入项目包的作用域中来引用它们,比如我们使用的 HashMap

#![allow(unused)]
fn main() {
use std::collections::HashMap;
}

这是一个以标准库 crate 名 std 开头的绝对路径。

嵌套路径来消除大量的 use

当需要引入很多定义于相同包或相同模块的项时,为每一项单独列出一行会占用源码很大的空间。例如猜猜看章节示例 2-4 中有两行 use 语句都从 std 引入项到作用域:

文件名:src/main.rs

use rand::Rng;
// --snip--
use std::cmp::Ordering;
use std::io;
// --snip--

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    println!("You guessed: {guess}");

    match guess.cmp(&secret_number) {
        Ordering::Less => println!("Too small!"),
        Ordering::Greater => println!("Too big!"),
        Ordering::Equal => println!("You win!"),
    }
}

相反,我们可以使用嵌套路径将相同的项在一行中引入作用域。这么做需要指定路径的相同部分,接着是两个冒号,接着是大括号中的各自不同的路径部分,如示例 7-18 所示。

文件名:src/main.rs

use rand::Rng;
// --snip--
use std::{cmp::Ordering, io};
// --snip--

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    println!("The secret number is: {secret_number}");

    println!("Please input your guess.");

    let mut guess = String::new();

    io::stdin()
        .read_line(&mut guess)
        .expect("Failed to read line");

    let guess: u32 = guess.trim().parse().expect("Please type a number!");

    println!("You guessed: {guess}");

    match guess.cmp(&secret_number) {
        Ordering::Less => println!("Too small!"),
        Ordering::Greater => println!("Too big!"),
        Ordering::Equal => println!("You win!"),
    }
}

示例 7-18: 指定嵌套的路径在一行中将多个带有相同前缀的项引入作用域

在较大的程序中,使用嵌套路径从相同包或模块中引入很多项,可以显著减少所需的独立 use 语句的数量!

我们可以在路径的任何层级使用嵌套路径,这在组合两个共享子路径的 use 语句时非常有用。例如,示例 7-19 中展示了两个 use 语句:一个将 std::io 引入作用域,另一个将 std::io::Write 引入作用域:

文件名:src/lib.rs

use std::io;
use std::io::Write;

示例 7-19: 通过两行 use 语句引入两个路径,其中一个是另一个的子路径

两个路径的相同部分是 std::io,这正是第一个路径。为了在一行 use 语句中引入这两个路径,可以在嵌套路径中使用 self,如示例 7-20 所示。

文件名:src/lib.rs

use std::io::{self, Write};

示例 7-20: 将示例 7-19 中部分重复的路径合并为一个 use 语句

这一行便将 std::iostd::io::Write 同时引入作用域。

通过 glob 运算符将所有的公有定义引入作用域

如果希望将一个路径下 所有 公有项引入作用域,可以指定路径后跟 *,glob 运算符:

#![allow(unused)]
fn main() {
use std::collections::*;
}

这个 use 语句将 std::collections 中定义的所有公有项引入当前作用域。使用 glob 运算符时请多加小心!Glob 会使得我们难以推导作用域中有什么名称和它们是在何处定义的。

glob 运算符经常用于测试模块 tests 中,这时会将所有内容引入作用域;我们将在第十一章 “如何编写测试” 部分讲解。glob 运算符有时也用于 prelude 模式;查看 标准库中的文档 了解这个模式的更多细节。

将模块拆分成多个文件

ch07-05-separating-modules-into-different-files.md
commit 2b4565662d1a7973d870744a923f58f8f7dcce91

到目前为止,本章所有的例子都在一个文件中定义多个模块。当模块变得更大时,你可能想要将它们的定义移动到单独的文件中,从而使代码更容易阅读。

例如,我们从示例 7-17 中包含多个餐厅模块的代码开始。我们会将模块提取到各自的文件中,而不是将所有模块都定义到 crate 根文件中。在这里,crate 根文件是 src/lib.rs,不过这个过程也适用于 crate 根文件是 src/main.rs 的二进制 crate。

首先将 front_of_house 模块提取到其自己的文件中。删除 front_of_house 模块的大括号中的代码,只留下 mod front_of_house; 声明,这样 src/lib.rs 会包含如示例 7-21 所示的代码。注意直到创建示例 7-22 中的 src/front_of_house.rs 文件之前代码都不能编译。

文件名:src/lib.rs

mod front_of_house;

pub use crate::front_of_house::hosting;

pub fn eat_at_restaurant() {
    hosting::add_to_waitlist();
}

示例 7-21: 声明 front_of_house 模块,其内容将位于 src/front_of_house.rs

接下来将之前大括号内的代码放入一个名叫 src/front_of_house.rs 的新文件中,如示例 7-22 所示。因为编译器找到了 crate 根中名叫 front_of_house 的模块声明,它就知道去搜寻这个文件。

文件名:src/front_of_house.rs

pub mod hosting {
    pub fn add_to_waitlist() {}
}

示例 7-22: 在 src/front_of_house.rs 中定义 front_of_house 模块

注意你只需在模块树中的某处使用一次 mod 声明就可以加载这个文件。一旦编译器知道了这个文件是项目的一部分(并且通过 mod 语句的位置知道了代码在模块树中的位置),项目中的其他文件应该使用其所声明的位置的路径来引用那个文件的代码,这在“引用模块项目的路径”部分有讲到。换句话说,mod 不是 你可能会在其他编程语言中看到的 "include" 操作。

接下来我们同样将 hosting 模块提取到自己的文件中。这个过程会有所不同,因为 hostingfront_of_house 的子模块而不是根模块。我们将 hosting 的文件放在与模块树中它的父级模块同名的目录中,在这里是 src/front_of_house/

为了移动 hosting,修改 src/front_of_house.rs 使之仅包含 hosting 模块的声明。

文件名:src/front_of_house.rs

pub mod hosting;

接着我们创建一个 src/front_of_house 目录和一个包含 hosting 模块定义的 hosting.rs 文件:

文件名:src/front_of_house/hosting.rs

#![allow(unused)]
fn main() {
pub fn add_to_waitlist() {}
}

如果将 hosting.rs 放在 src 目录,编译器会认为 hosting 模块中的 hosting.rs 的代码声明于 crate 根,而不是声明为 front_of_house 的子模块。编译器所遵循的哪些文件对应哪些模块的代码的规则,意味着目录和文件更接近于模块树。

另一种文件路径

目前为止我们介绍了 Rust 编译器所最常用的文件路径;不过一种更老的文件路径也仍然是支持的。

对于声明于 crate 根的 front_of_house 模块,编译器会在如下位置查找模块代码:

  • src/front_of_house.rs(我们所介绍的)
  • src/front_of_house/mod.rs(老风格,不过仍然支持)

对于 front_of_house 的子模块 hosting,编译器会在如下位置查找模块代码:

  • src/front_of_house/hosting.rs(我们所介绍的)
  • src/front_of_house/hosting/mod.rs(老风格,不过仍然支持)

如果你对同一模块同时使用这两种路径风格,会得到一个编译错误。在同一项目中的不同模块混用不同的路径风格是允许的,不过这会使他人感到疑惑。

使用 mod.rs 这一文件名的风格的主要缺点是会导致项目中出现很多 mod.rs 文件,当你在编辑器中同时打开它们时会感到疑惑。

我们将各个模块的代码移动到独立文件了,同时模块树依旧相同。eat_at_restaurant 中的函数调用也无需修改继续保持有效,即便其定义存在于不同的文件中。这个技巧让你可以在模块代码增长时,将它们移动到新文件中。

注意,src/lib.rs 中的 pub use crate::front_of_house::hosting 语句也并未发生改变。use 也不会对哪些文件会被编译为 crate 的一部分有任何影响。mod 关键字声明了模块,而 Rust 会在与模块同名的文件中查找模块的代码。

总结

Rust 提供了将包分成多个 crate,将 crate 分成模块,以及通过指定绝对或相对路径从一个模块引用另一个模块中定义的项的方式。你可以通过使用 use 语句将路径引入作用域,这样在多次使用时可以使用更短的路径。模块定义的代码默认是私有的,不过可以选择增加 pub 关键字使其定义变为公有。

接下来,让我们看看一些标准库提供的集合数据类型,你可以利用它们编写出漂亮整洁的代码。

常见集合

ch08-00-common-collections.md
commit 1fd890031311612e54965f7f800a8c8bd4464663

Rust 标准库中包含一系列被称为 集合collections)的非常有用的数据结构。大部分其他数据类型都代表一个特定的值,不过集合可以包含多个值。不同于内建的数组和元组类型,这些集合指向的数据是储存在堆上的,这意味着数据的数量不必在编译时就已知,并且还可以随着程序的运行增长或缩小。每种集合都有着不同功能和成本,而根据当前情况选择合适的集合,这是一项应当逐渐掌握的技能。在这一章里,我们将详细的了解三个在 Rust 程序中被广泛使用的集合:

  • vector 允许我们一个挨着一个地储存一系列数量可变的值
  • 字符串string)是字符的集合。我们之前见过 String 类型,不过在本章我们将深入了解。
  • 哈希 maphash map)允许我们将值与一个特定的键(key)相关联。这是一个叫做 map 的更通用的数据结构的特定实现。

对于标准库提供的其他类型的集合,请查看文档

我们将讨论如何创建和更新 vector、字符串和哈希 map,以及它们有什么特别之处。

使用 Vector 储存列表

ch08-01-vectors.md
commit ac16184a7f56d17daa9c4c76901371085dc0ac43

我们要讲到的第一个类型是 Vec<T>,也被称为 vector。vector 允许我们在一个单独的数据结构中储存多于一个的值,它在内存中彼此相邻地排列所有的值。vector 只能储存相同类型的值。它们在拥有一系列项的场景下非常实用,例如文件中的文本行或是购物车中商品的价格。

新建 vector

为了创建一个新的空 vector,可以调用 Vec::new 函数,如示例 8-1 所示:

fn main() {
    let v: Vec<i32> = Vec::new();
}

示例 8-1:新建一个空的 vector 来储存 i32 类型的值

注意这里我们增加了一个类型注解。因为没有向这个 vector 中插入任何值,Rust 并不知道我们想要储存什么类型的元素。这是一个非常重要的点。vector 是用泛型实现的,第十章会涉及到如何对你自己的类型使用它们。现在,所有你需要知道的就是 Vec<T> 是一个由标准库提供的类型,它可以存放任何类型,而当 Vec 存放某个特定类型时,那个类型位于尖括号中。在示例 8-1 中,我们告诉 Rust v 这个 Vec<T> 将存放 i32 类型的元素。

通常,我们会用初始值来创建一个 Vec<T> 而 Rust 会推断出储存值的类型,所以很少会需要这些类型注解。为了方便 Rust 提供了 vec! 宏,这个宏会根据我们提供的值来创建一个新的 vector。示例 8-2 新建一个拥有值 123Vec<i32>。推断为 i32 是因为这是默认整型类型,第三章的 “数据类型” 讨论过:

fn main() {
    let v = vec![1, 2, 3];
}

示例 8-2:新建一个包含初值的 vector

因为我们提供了 i32 类型的初始值,Rust 可以推断出 v 的类型是 Vec<i32>,因此类型注解就不是必须的。接下来让我们看看如何修改一个 vector。

更新 vector

对于新建一个 vector 并向其增加元素,可以使用 push 方法,如示例 8-3 所示:

fn main() {
    let mut v = Vec::new();

    v.push(5);
    v.push(6);
    v.push(7);
    v.push(8);
}

示例 8-3:使用 push 方法向 vector 增加值

如第三章中讨论的任何变量一样,如果想要能够改变它的值,必须使用 mut 关键字使其可变。放入其中的所有值都是 i32 类型的,而且 Rust 也根据数据做出如此判断,所以不需要 Vec<i32> 注解。

读取 vector 的元素

有两种方法引用 vector 中储存的值:通过索引或使用 get 方法。在接下来的示例中,为了更加清楚的说明,我们已经标注了这些函数返回的值的类型。

示例 8-4 展示了访问 vector 中一个值的两种方式,索引语法或者 get 方法:

fn main() {
    let v = vec![1, 2, 3, 4, 5];

    let third: &i32 = &v[2];
    println!("The third element is {third}");

    let third: Option<&i32> = v.get(2);
    match third {
        Some(third) => println!("The third element is {third}"),
        None => println!("There is no third element."),
    }
}

列表 8-4:使用索引语法或 get 方法来访问 vector 中的项

这里有几个细节需要注意。我们使用索引值 2 来获取第三个元素,因为索引是从数字 0 开始的。使用 &[] 会得到一个索引位置元素的引用。当使用索引作为参数调用 get 方法时,会得到一个可以用于 matchOption<&T>

Rust 提供了两种引用元素的方法的原因是当尝试使用现有元素范围之外的索引值时可以选择让程序如何运行。举个例子,让我们看看使用这个技术,尝试在当有一个 5 个元素的 vector 接着访问索引 100 位置的元素会发生什么,如示例 8-5 所示:

fn main() {
    let v = vec![1, 2, 3, 4, 5];

    let does_not_exist = &v[100];
    let does_not_exist = v.get(100);
}

示例 8-5:尝试访问一个包含 5 个元素的 vector 的索引 100 处的元素

当运行这段代码,你会发现对于第一个 [] 方法,当引用一个不存在的元素时 Rust 会造成 panic。这个方法更适合当程序认为尝试访问超过 vector 结尾的元素是一个严重错误的情况,这时应该使程序崩溃。

get 方法被传递了一个数组外的索引时,它不会 panic 而是返回 None。当偶尔出现超过 vector 范围的访问属于正常情况的时候可以考虑使用它。接着你的代码可以有处理 Some(&element)None 的逻辑,如第六章讨论的那样。例如,索引可能来源于用户输入的数字。如果它们不慎输入了一个过大的数字那么程序就会得到 None 值,你可以告诉用户当前 vector 元素的数量并再请求它们输入一个有效的值。这就比因为输入错误而使程序崩溃要友好的多!

一旦程序获取了一个有效的引用,借用检查器将会执行所有权和借用规则(第四章讲到)来确保 vector 内容的这个引用和任何其他引用保持有效。回忆一下不能在相同作用域中同时存在可变和不可变引用的规则。这个规则适用于示例 8-6,当我们获取了 vector 的第一个元素的不可变引用并尝试在 vector 末尾增加一个元素的时候,如果尝试在函数的后面引用这个元素是行不通的:

fn main() {
    let mut v = vec![1, 2, 3, 4, 5];

    let first = &v[0];

    v.push(6);

    println!("The first element is: {first}");
}

示例 8-6:在拥有 vector 中项的引用的同时向其增加一个元素

编译会给出这个错误:

$ cargo run
   Compiling collections v0.1.0 (file:///projects/collections)
error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable
 --> src/main.rs:6:5
  |
4 |     let first = &v[0];
  |                  - immutable borrow occurs here
5 |
6 |     v.push(6);
  |     ^^^^^^^^^ mutable borrow occurs here
7 |
8 |     println!("The first element is: {first}");
  |                                      ----- immutable borrow later used here

For more information about this error, try `rustc --explain E0502`.
error: could not compile `collections` due to previous error

示例 8-6 中的代码看起来应该能够运行:为什么第一个元素的引用会关心 vector 结尾的变化?不能这么做的原因是由于 vector 的工作方式:在 vector 的结尾增加新元素时,在没有足够空间将所有元素依次相邻存放的情况下,可能会要求分配新内存并将老的元素拷贝到新的空间中。这时,第一个元素的引用就指向了被释放的内存。借用规则阻止程序陷入这种状况。

注意:关于 Vec<T> 类型的更多实现细节,请查看 “The Rustonomicon”

遍历 vector 中的元素

如果想要依次访问 vector 中的每一个元素,我们可以遍历其所有的元素而无需通过索引一次一个的访问。示例 8-7 展示了如何使用 for 循环来获取 i32 值的 vector 中的每一个元素的不可变引用并将其打印:

fn main() {
    let v = vec![100, 32, 57];
    for i in &v {
        println!("{i}");
    }
}

示例 8-7:通过 for 循环遍历 vector 的元素并打印

我们也可以遍历可变 vector 的每一个元素的可变引用以便能改变它们。示例 8-8 中的 for 循环会给每一个元素加 50

fn main() {
    let mut v = vec![100, 32, 57];
    for i in &mut v {
        *i += 50;
    }
}

示例 8-8:遍历 vector 中元素的可变引用

为了修改可变引用所指向的值,在使用 += 运算符之前必须使用解引用运算符(*)获取 i 中的值。第十五章的 “通过解引用运算符追踪指针的值” 部分会详细介绍解引用运算符。

因为借用检查器的规则,无论可变还是不可变地遍历一个 vector 都是安全的。如果尝试在示例 8-7 和 示例 8-8 的 for 循环体内插入或删除项,都会得到一个类似示例 8-6 代码中类似的编译错误。for 循环中获取的 vector 引用阻止了同时对 vector 整体的修改。

使用枚举来储存多种类型

vector 只能储存相同类型的值。这是很不方便的;绝对会有需要储存一系列不同类型的值的用例。幸运的是,枚举的成员都被定义为相同的枚举类型,所以当需要在 vector 中储存不同类型值时,我们可以定义并使用一个枚举!

例如,假如我们想要从电子表格的一行中获取值,而这一行的有些列包含数字,有些包含浮点值,还有些是字符串。我们可以定义一个枚举,其成员会存放这些不同类型的值,同时所有这些枚举成员都会被当作相同类型:那个枚举的类型。接着可以创建一个储存枚举值的 vector,这样最终就能够储存不同类型的值了。示例 8-9 展示了其用例:

fn main() {
    enum SpreadsheetCell {
        Int(i32),
        Float(f64),
        Text(String),
    }

    let row = vec![
        SpreadsheetCell::Int(3),
        SpreadsheetCell::Text(String::from("blue")),
        SpreadsheetCell::Float(10.12),
    ];
}

示例 8-9:定义一个枚举,以便能在 vector 中存放不同类型的数据

Rust 在编译时就必须准确的知道 vector 中类型的原因在于它需要知道储存每个元素到底需要多少内存。第二个好处是可以准确的知道这个 vector 中允许什么类型。如果 Rust 允许 vector 存放任意类型,那么当对 vector 元素执行操作时一个或多个类型的值就有可能会造成错误。使用枚举外加 match 意味着 Rust 能在编译时就保证总是会处理所有可能的情况,正如第六章讲到的那样。

如果在编写程序时不能确切无遗地知道运行时会储存进 vector 的所有类型,枚举技术就行不通了。相反,你可以使用 trait 对象,第十七章会讲到它。

现在我们了解了一些使用 vector 的最常见的方式,请一定去看看标准库中 Vec 定义的很多其他实用方法的 API 文档。例如,除了 push 之外还有一个 pop 方法,它会移除并返回 vector 的最后一个元素。

丢弃 vector 时也会丢弃其所有元素

类似于任何其他的 struct,vector 在其离开作用域时会被释放,如示例 8-4 所标注的:

fn main() {
    {
        let v = vec![1, 2, 3, 4];

        // do stuff with v
    } // <- v goes out of scope and is freed here
}

示例 8-10:展示 vector 和其元素于何处被丢弃

当 vector 被丢弃时,所有其内容也会被丢弃,这意味着这里它包含的整数将被清理。借用检查器确保了任何 vector 中内容的引用仅在 vector 本身有效时才可用。

让我们继续下一个集合类型:String

使用字符串储存 UTF-8 编码的文本

ch08-02-strings.md
commit 668c64760b5c7ea654facb4ba5fe9faddfda27cc

第四章已经讲过一些字符串的内容,不过现在让我们更深入地了解它。字符串是新晋 Rustacean 们通常会被困住的领域,这是由于三方面理由的结合:Rust 倾向于确保暴露出可能的错误,字符串是比很多程序员所想象的要更为复杂的数据结构,以及 UTF-8。所有这些要素结合起来对于来自其他语言背景的程序员就可能显得很困难了。

在集合章节中讨论字符串的原因是,字符串就是作为字节的集合外加一些方法实现的,当这些字节被解释为文本时,这些方法提供了实用的功能。在这一部分,我们会讲到 String 中那些任何集合类型都有的操作,比如创建、更新和读取。也会讨论 String 与其他集合不一样的地方,例如索引 String 是很复杂的,由于人和计算机理解 String 数据方式的不同。

什么是字符串?

在开始深入这些方面之前,我们需要讨论一下术语 字符串 的具体意义。Rust 的核心语言中只有一种字符串类型:字符串 slice str,它通常以被借用的形式出现,&str。第四章讲到了 字符串 slices:它们是一些对储存在别处的 UTF-8 编码字符串数据的引用。举例来说,由于字符串字面值被储存在程序的二进制输出中,因此字符串字面值也是字符串 slices。

字符串(String)类型由 Rust 标准库提供,而不是编入核心语言,它是一种可增长、可变、可拥有、UTF-8 编码的字符串类型。当 Rustaceans 提及 Rust 中的 "字符串 "时,他们可能指的是 String 或 string slice &str 类型,而不仅仅是其中一种类型。虽然本节主要讨论 String,但这两种类型在 Rust 的标准库中都有大量使用,而且 String 和 字符串 slices 都是 UTF-8 编码的。

新建字符串

很多 Vec 可用的操作在 String 中同样可用,事实上 String 被实现为一个带有一些额外保证、限制和功能的字节 vector 的封装。其中一个同样作用于 Vec<T>String 函数的例子是用来新建一个实例的 new 函数,如示例 8-11 所示。

fn main() {
    let mut s = String::new();
}

示例 8-11:新建一个空的 String

这新建了一个叫做 s 的空的字符串,接着我们可以向其中装载数据。通常字符串会有初始数据,因为我们希望一开始就有这个字符串。为此,可以使用 to_string 方法,它能用于任何实现了 Display trait 的类型,比如字符串字面值。示例 8-12 展示了两个例子。

fn main() {
    let data = "initial contents";

    let s = data.to_string();

    // 该方法也可直接用于字符串字面值:
    let s = "initial contents".to_string();
}

示例 8-12:使用 to_string 方法从字符串字面值创建 String

这些代码会创建包含 initial contents 的字符串。

也可以使用 String::from 函数来从字符串字面值创建 String。示例 8-13 中的代码等同于使用 to_string

fn main() {
    let s = String::from("initial contents");
}

示例 8-13:使用 String::from 函数从字符串字面值创建 String

因为字符串应用广泛,这里有很多不同的用于字符串的通用 API 可供选择。其中一些可能看起来多余,不过都有其用武之地!在这个例子中,String::from.to_string 最终做了完全相同的工作,所以如何选择就是代码风格与可读性的问题了。

记住字符串是 UTF-8 编码的,所以可以包含任何可以正确编码的数据,如示例 8-14 所示。

fn main() {
    let hello = String::from("السلام عليكم");
    let hello = String::from("Dobrý den");
    let hello = String::from("Hello");
    let hello = String::from("שָׁלוֹם");
    let hello = String::from("नमस्ते");
    let hello = String::from("こんにちは");
    let hello = String::from("안녕하세요");
    let hello = String::from("你好");
    let hello = String::from("Olá");
    let hello = String::from("Здравствуйте");
    let hello = String::from("Hola");
}

示例 8-14:在字符串中储存不同语言的问候语

所有这些都是有效的 String 值。

更新字符串

String 的大小可以增加,其内容也可以改变,就像可以放入更多数据来改变 Vec 的内容一样。另外,可以方便的使用 + 运算符或 format! 宏来拼接 String 值。

使用 push_strpush 附加字符串

可以通过 push_str 方法来附加字符串 slice,从而使 String 变长,如示例 8-15 所示。

fn main() {
    let mut s = String::from("foo");
    s.push_str("bar");
}

示例 8-15:使用 push_str 方法向 String 附加字符串 slice

执行这两行代码之后,s 将会包含 foobarpush_str 方法采用字符串 slice,因为我们并不需要获取参数的所有权。例如,示例 8-16 中我们希望在将 s2 的内容附加到 s1 之后还能使用它。

fn main() {
    let mut s1 = String::from("foo");
    let s2 = "bar";
    s1.push_str(s2);
    println!("s2 is {s2}");
}

示例 8-16:将字符串 slice 的内容附加到 String 后使用它

如果 push_str 方法获取了 s2 的所有权,就不能在最后一行打印出其值了。好在代码如我们期望那样工作!

push 方法被定义为获取一个单独的字符作为参数,并附加到 String 中。示例 8-17 展示了使用 push 方法将字母 "l" 加入 String 的代码。

fn main() {
    let mut s = String::from("lo");
    s.push('l');
}

示例 8-17:使用 push 将一个字符加入 String 值中

执行这些代码之后,s 将会包含 “lol”。

使用 + 运算符或 format! 宏拼接字符串

通常你会希望将两个已知的字符串合并在一起。一种办法是像这样使用 + 运算符,如示例 8-18 所示。

fn main() {
    let s1 = String::from("Hello, ");
    let s2 = String::from("world!");
    let s3 = s1 + &s2; // 注意 s1 被移动了,不能继续使用
}

示例 8-18:使用 + 运算符将两个 String 值合并到一个新的 String 值中

执行完这些代码之后,字符串 s3 将会包含 Hello, world!s1 在相加后不再有效的原因,和使用 s2 的引用的原因,与使用 + 运算符时调用的函数签名有关。+ 运算符使用了 add 函数,这个函数签名看起来像这样:

fn add(self, s: &str) -> String {

在标准库中你会发现,add 的定义使用了泛型和关联类型。在这里我们替换为了具体类型,这也正是当使用 String 值调用这个方法会发生的。第十章会讨论泛型。这个签名提供了理解 + 运算那微妙部分的线索。

首先,s2 使用了 &,意味着我们使用第二个字符串的 引用 与第一个字符串相加。这是因为 add 函数的 s 参数:只能将 &strString 相加,不能将两个 String 值相加。不过等一下 —— &s2 的类型是 &String, 而不是 add 第二个参数所指定的 &str。那么为什么示例 8-18 还能编译呢?

之所以能够在 add 调用中使用 &s2 是因为 &String 可以被 强转coerced)成 &str。当add函数被调用时,Rust 使用了一个被称为 Deref 强制转换deref coercion)的技术,你可以将其理解为它把 &s2 变成了 &s2[..]。第十五章会更深入的讨论 Deref 强制转换。因为 add 没有获取参数的所有权,所以 s2 在这个操作后仍然是有效的 String

其次,可以发现签名中 add 获取了 self 的所有权,因为 self 没有 使用 &。这意味着示例 8-18 中的 s1 的所有权将被移动到 add 调用中,之后就不再有效。所以虽然 let s3 = s1 + &s2; 看起来就像它会复制两个字符串并创建一个新的字符串,而实际上这个语句会获取 s1 的所有权,附加上从 s2 中拷贝的内容,并返回结果的所有权。换句话说,它看起来好像生成了很多拷贝,不过实际上并没有:这个实现比拷贝要更高效。

如果想要级联多个字符串,+ 的行为就显得笨重了:

fn main() {
    let s1 = String::from("tic");
    let s2 = String::from("tac");
    let s3 = String::from("toe");

    let s = s1 + "-" + &s2 + "-" + &s3;
}

这时 s 的内容会是 “tic-tac-toe”。在有这么多 +" 字符的情况下,很难理解具体发生了什么。对于更为复杂的字符串链接,可以使用 format! 宏:

fn main() {
    let s1 = String::from("tic");
    let s2 = String::from("tac");
    let s3 = String::from("toe");

    let s = format!("{s1}-{s2}-{s3}");
}

这些代码也会将 s 设置为 “tic-tac-toe”。format!println! 的工作原理相同,不过不同于将输出打印到屏幕上,它返回一个带有结果内容的 String。这个版本就好理解的多,宏 format! 生成的代码使用引用所以不会获取任何参数的所有权。

索引字符串

在很多语言中,通过索引来引用字符串中的单独字符是有效且常见的操作。然而在 Rust 中,如果你尝试使用索引语法访问 String 的一部分,会出现一个错误。考虑一下如示例 8-19 中所示的无效代码。

fn main() {
    let s1 = String::from("hello");
    let h = s1[0];
}

示例 8-19:尝试对字符串使用索引语法

这段代码会导致如下错误:

$ cargo run
   Compiling collections v0.1.0 (file:///projects/collections)
error[E0277]: the type `String` cannot be indexed by `{integer}`
 --> src/main.rs:3:13
  |
3 |     let h = s1[0];
  |             ^^^^^ `String` cannot be indexed by `{integer}`
  |
  = help: the trait `Index<{integer}>` is not implemented for `String`
  = help: the following other types implement trait `Index<Idx>`:
            <String as Index<RangeFrom<usize>>>
            <String as Index<RangeFull>>
            <String as Index<RangeInclusive<usize>>>
            <String as Index<RangeTo<usize>>>
            <String as Index<RangeToInclusive<usize>>>
            <String as Index<std::ops::Range<usize>>>
            <str as Index<I>>

For more information about this error, try `rustc --explain E0277`.
error: could not compile `collections` due to previous error

错误和提示说明了全部问题:Rust 的字符串不支持索引。那么接下来的问题是,为什么不支持呢?为了回答这个问题,我们必须先聊一聊 Rust 是如何在内存中储存字符串的。

内部表现

String 是一个 Vec<u8> 的封装。让我们看看示例 8-14 中一些正确编码的字符串的例子。首先是这一个:

fn main() {
    let hello = String::from("السلام عليكم");
    let hello = String::from("Dobrý den");
    let hello = String::from("Hello");
    let hello = String::from("שָׁלוֹם");
    let hello = String::from("नमस्ते");
    let hello = String::from("こんにちは");
    let hello = String::from("안녕하세요");
    let hello = String::from("你好");
    let hello = String::from("Olá");
    let hello = String::from("Здравствуйте");
    let hello = String::from("Hola");
}

在这里,len 的值是 4,这意味着储存字符串 “Hola” 的 Vec 的长度是四个字节:这里每一个字母的 UTF-8 编码都占用一个字节。那下面这个例子又如何呢?(注意这个字符串中的首字母是西里尔字母的 Ze 而不是数字 3。)

fn main() {
    let hello = String::from("السلام عليكم");
    let hello = String::from("Dobrý den");
    let hello = String::from("Hello");
    let hello = String::from("שָׁלוֹם");
    let hello = String::from("नमस्ते");
    let hello = String::from("こんにちは");
    let hello = String::from("안녕하세요");
    let hello = String::from("你好");
    let hello = String::from("Olá");
    let hello = String::from("Здравствуйте");
    let hello = String::from("Hola");
}

当问及这个字符是多长的时候有人可能会说是 12。然而,Rust 的回答是 24。这是使用 UTF-8 编码 “Здравствуйте” 所需要的字节数,这是因为每个 Unicode 标量值需要两个字节存储。因此一个字符串字节值的索引并不总是对应一个有效的 Unicode 标量值。作为演示,考虑如下无效的 Rust 代码:

let hello = "Здравствуйте";
let answer = &hello[0];

我们已经知道 answer 不是第一个字符 3。当使用 UTF-8 编码时,(西里尔字母的 Ze)З 的第一个字节是 208,第二个是 151,所以 answer 实际上应该是 208,不过 208 自身并不是一个有效的字母。返回 208 可不是一个请求字符串第一个字母的人所希望看到的,不过它是 Rust 在字节索引 0 位置所能提供的唯一数据。用户通常不会想要一个字节值被返回。即使这个字符串只有拉丁字母,如果 &"hello"[0] 是返回字节值的有效代码,它也会返回 104 而不是 h

为了避免返回意外的值并造成不能立刻发现的 bug,Rust 根本不会编译这些代码,并在开发过程中及早杜绝了误会的发生。

字节、标量值和字形簇!天呐!

这引起了关于 UTF-8 的另外一个问题:从 Rust 的角度来讲,事实上有三种相关方式可以理解字符串:字节、标量值和字形簇(最接近人们眼中 字母 的概念)。

比如这个用梵文书写的印度语单词 “नमस्ते”,最终它储存在 vector 中的 u8 值看起来像这样:

[224, 164, 168, 224, 164, 174, 224, 164, 184, 224, 165, 141, 224, 164, 164,
224, 165, 135]

这里有 18 个字节,也就是计算机最终会储存的数据。如果从 Unicode 标量值的角度理解它们,也就像 Rust 的 char 类型那样,这些字节看起来像这样:

['न', 'म', 'स', '्', 'त', 'े']

这里有六个 char,不过第四个和第六个都不是字母,它们是发音符号本身并没有任何意义。最后,如果以字形簇的角度理解,就会得到人们所说的构成这个单词的四个字母:

["न", "म", "स्", "ते"]

Rust 提供了多种不同的方式来解释计算机储存的原始字符串数据,这样程序就可以选择它需要的表现方式,而无所谓是何种人类语言。

最后一个 Rust 不允许使用索引获取 String 字符的原因是,索引操作预期总是需要常数时间(O(1))。但是对于 String 不可能保证这样的性能,因为 Rust 必须从开头到索引位置遍历来确定有多少有效的字符。

字符串 slice

索引字符串通常是一个坏点子,因为字符串索引应该返回的类型是不明确的:字节值、字符、字形簇或者字符串 slice。因此,如果你真的希望使用索引创建字符串 slice 时,Rust 会要求你更明确一些。为了更明确索引并表明你需要一个字符串 slice,相比使用 [] 和单个值的索引,可以使用 [] 和一个 range 来创建含特定字节的字符串 slice:

#![allow(unused)]
fn main() {
let hello = "Здравствуйте";

let s = &hello[0..4];
}

这里,s 会是一个 &str,它包含字符串的头四个字节。早些时候,我们提到了这些字母都是两个字节长的,所以这意味着 s 将会是 “Зд”。

如果获取 &hello[0..1] 会发生什么呢?答案是:Rust 在运行时会 panic,就跟访问 vector 中的无效索引时一样:

$ cargo run
   Compiling collections v0.1.0 (file:///projects/collections)
    Finished dev [unoptimized + debuginfo] target(s) in 0.43s
     Running `target/debug/collections`
thread 'main' panicked at 'byte index 1 is not a char boundary; it is inside 'З' (bytes 0..2) of `Здравствуйте`', src/main.rs:4:14
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

你应该小心谨慎地使用这个操作,因为这么做可能会使你的程序崩溃。

遍历字符串的方法

操作字符串每一部分的最好的方法是明确表示需要字符还是字节。对于单独的 Unicode 标量值使用 chars 方法。对 “Зд” 调用 chars 方法会将其分开并返回两个 char 类型的值,接着就可以遍历其结果来访问每一个元素了:

#![allow(unused)]
fn main() {
for c in "Зд".chars() {
    println!("{c}");
}
}

这些代码会打印出如下内容:

З
д

另外 bytes 方法返回每一个原始字节,这可能会适合你的使用场景:

#![allow(unused)]
fn main() {
for b in "Зд".bytes() {
    println!("{b}");
}
}

这些代码会打印出组成 String 的 4 个字节:

208
151
208
180

不过请记住有效的 Unicode 标量值可能会由不止一个字节组成。

从字符串中获取如同天城文这样的字形簇是很复杂的,所以标准库并没有提供这个功能。crates.io 上有些提供这样功能的 crate。

字符串并不简单

总而言之,字符串还是很复杂的。不同的语言选择了不同的向程序员展示其复杂性的方式。Rust 选择了以准确的方式处理 String 数据作为所有 Rust 程序的默认行为,这意味着程序员们必须更多的思考如何预先处理 UTF-8 数据。这种权衡取舍相比其他语言更多的暴露出了字符串的复杂性,不过也使你在开发周期后期免于处理涉及非 ASCII 字符的错误。

好消息是标准库提供了很多围绕 String&str 构建的功能,来帮助我们正确处理这些复杂场景。请务必查看这些使用方法的文档,例如 contains 来搜索一个字符串,和 replace 将字符串的一部分替换为另一个字符串。

称作 String 的类型是由标准库提供的,而没有写进核心语言部分,它是可增长的、可变的、有所有权的、UTF-8 编码的字符串类型。当 Rustacean 们谈到 Rust 的 “字符串”时,它们通常指的是 String 或字符串 slice &str 类型,而不特指其中某一个。虽然本部分内容大多是关于 String 的,不过这两个类型在 Rust 标准库中都被广泛使用,String 和字符串 slices 都是 UTF-8 编码的。

现在让我们转向一些不太复杂的集合:哈希 map!

使用 Hash Map 储存键值对

ch08-03-hash-maps.md
commit 50775360ba3904c41e84176337ff47e6e7d6177c

最后介绍的常用集合类型是 哈希 maphash map)。HashMap<K, V> 类型储存了一个键类型 K 对应一个值类型 V 的映射。它通过一个 哈希函数hashing function)来实现映射,决定如何将键和值放入内存中。很多编程语言支持这种数据结构,不过通常有不同的名字:哈希、map、对象、哈希表或者关联数组,仅举几例。

哈希 map 可以用于需要任何类型作为键来寻找数据的情况,而不是像 vector 那样通过索引。例如,在一个游戏中,你可以将每个团队的分数记录到哈希 map 中,其中键是队伍的名字而值是每个队伍的分数。给出一个队名,就能得到他们的得分。

本章我们会介绍哈希 map 的基本 API,不过还有更多吸引人的功能隐藏于标准库在 HashMap<K, V> 上定义的函数中。一如既往请查看标准库文档来了解更多信息。

新建一个哈希 map

可以使用 new 创建一个空的 HashMap,并使用 insert 增加元素。在示例 8-20 中我们记录两支队伍的分数,分别是蓝队和黄队。蓝队开始有 10 分而黄队开始有 50 分:

fn main() {
    use std::collections::HashMap;

    let mut scores = HashMap::new();

    scores.insert(String::from("Blue"), 10);
    scores.insert(String::from("Yellow"), 50);
}

示例 8-20:新建一个哈希 map 并插入一些键值对

注意必须首先 use 标准库中集合部分的 HashMap。在这三个常用集合中,HashMap 是最不常用的,所以并没有被 prelude 自动引用。标准库中对 HashMap 的支持也相对较少,例如,并没有内建的构建宏。

像 vector 一样,哈希 map 将它们的数据储存在堆上,这个 HashMap 的键类型是 String 而值类型是 i32。类似于 vector,哈希 map 是同质的:所有的键必须是相同类型,值也必须都是相同类型。

访问哈希 map 中的值

可以通过 get 方法并提供对应的键来从哈希 map 中获取值,如示例 8-21 所示:

fn main() {
    use std::collections::HashMap;

    let mut scores = HashMap::new();

    scores.insert(String::from("Blue"), 10);
    scores.insert(String::from("Yellow"), 50);

    let team_name = String::from("Blue");
    let score = scores.get(&team_name).copied().unwrap_or(0);
}

示例 8-21:访问哈希 map 中储存的蓝队分数

这里,score 是与蓝队分数相关的值,应为 10get 方法返回 Option<&V>,如果某个键在哈希 map 中没有对应的值,get 会返回 None。程序中通过调用 copied 方法来获取一个 Option<i32> 而不是 Option<&i32>,接着调用 unwrap_orscores 中没有该键所对应的项时将其设置为零。

可以使用与 vector 类似的方式来遍历哈希 map 中的每一个键值对,也就是 for 循环:

fn main() {
    use std::collections::HashMap;

    let mut scores = HashMap::new();

    scores.insert(String::from("Blue"), 10);
    scores.insert(String::from("Yellow"), 50);

    for (key, value) in &scores {
        println!("{key}: {value}");
    }
}

这会以任意顺序打印出每一个键值对:

Yellow: 50
Blue: 10

哈希 map 和所有权

对于像 i32 这样的实现了 Copy trait 的类型,其值可以拷贝进哈希 map。对于像 String 这样拥有所有权的值,其值将被移动而哈希 map 会成为这些值的所有者,如示例 8-22 所示:

fn main() {
    use std::collections::HashMap;

    let field_name = String::from("Favorite color");
    let field_value = String::from("Blue");

    let mut map = HashMap::new();
    map.insert(field_name, field_value);
    // 这里 field_name 和 field_value 不再有效,
    // 尝试使用它们看看会出现什么编译错误!
}

示例 8-22:展示一旦键值对被插入后就为哈希 map 所拥有

insert 调用将 field_namefield_value 移动到哈希 map 中后,将不能使用这两个绑定。

如果将值的引用插入哈希 map,这些值本身将不会被移动进哈希 map。但是这些引用指向的值必须至少在哈希 map 有效时也是有效的。第十章 “生命周期确保引用有效” 部分将会更多的讨论这个问题。

更新哈希 map

尽管键值对的数量是可以增长的,每个唯一的键只能同时关联一个值(反之不一定成立:比如蓝队和黄队的 scores 哈希 map 中都可能存储有 10 这个值)。

当我们想要改变哈希 map 中的数据时,必须决定如何处理一个键已经有值了的情况。可以选择完全无视旧值并用新值代替旧值。可以选择保留旧值而忽略新值,并只在键 没有 对应值时增加新值。或者可以结合新旧两值。让我们看看这分别该如何处理!

覆盖一个值

如果我们插入了一个键值对,接着用相同的键插入一个不同的值,与这个键相关联的旧值将被替换。即便示例 8-23 中的代码调用了两次 insert,哈希 map 也只会包含一个键值对,因为两次都是对蓝队的键插入的值:

fn main() {
    use std::collections::HashMap;

    let mut scores = HashMap::new();

    scores.insert(String::from("Blue"), 10);
    scores.insert(String::from("Blue"), 25);

    println!("{:?}", scores);
}

示例 8-23:替换以特定键储存的值

这会打印出 {"Blue": 25}。原始的值 10 则被覆盖了。

只在键没有对应值时插入键值对

我们经常会检查某个特定的键是否已经存在于哈希 map 中并进行如下操作:如果哈希 map 中键已经存在则不做任何操作。如果不存在则连同值一块插入。

为此哈希 map 有一个特有的 API,叫做 entry,它获取我们想要检查的键作为参数。entry 函数的返回值是一个枚举,Entry,它代表了可能存在也可能不存在的值。比如说我们想要检查黄队的键是否关联了一个值。如果没有,就插入值 50,对于蓝队也是如此。使用 entry API 的代码看起来像示例 8-24 这样:

fn main() {
    use std::collections::HashMap;

    let mut scores = HashMap::new();
    scores.insert(String::from("Blue"), 10);

    scores.entry(String::from("Yellow")).or_insert(50);
    scores.entry(String::from("Blue")).or_insert(50);

    println!("{:?}", scores);
}

示例 8-24:使用 entry 方法只在键没有对应一个值时插入

Entryor_insert 方法在键对应的值存在时就返回这个值的可变引用,如果不存在则将参数作为新值插入并返回新值的可变引用。这比编写自己的逻辑要简明的多,另外也与借用检查器结合得更好。

运行示例 8-24 的代码会打印出 {"Yellow": 50, "Blue": 10}。第一个 entry 调用会插入黄队的键和值 50,因为黄队并没有一个值。第二个 entry 调用不会改变哈希 map 因为蓝队已经有了值 10

根据旧值更新一个值

另一个常见的哈希 map 的应用场景是找到一个键对应的值并根据旧的值更新它。例如,示例 8-25 中的代码计数一些文本中每一个单词分别出现了多少次。我们使用哈希 map 以单词作为键并递增其值来记录我们遇到过几次这个单词。如果是第一次看到某个单词,就插入值 0

fn main() {
    use std::collections::HashMap;

    let text = "hello world wonderful world";

    let mut map = HashMap::new();

    for word in text.split_whitespace() {
        let count = map.entry(word).or_insert(0);
        *count += 1;
    }

    println!("{:?}", map);
}

示例 8-25:通过哈希 map 储存单词和计数来统计出现次数

这会打印出 {"world": 2, "hello": 1, "wonderful": 1}。你可能会看到相同的键值对以不同的顺序打印:回忆一下“访问哈希 map 中的值”部分中遍历哈希 map 会以任意顺序进行。

split_whitespace 方法返回一个由空格分隔 text 值子 slice 的迭代器。or_insert 方法返回这个键的值的一个可变引用(&mut V)。这里我们将这个可变引用储存在 count 变量中,所以为了赋值必须首先使用星号(*)解引用 count。这个可变引用在 for 循环的结尾离开作用域,这样所有这些改变都是安全的并符合借用规则。

哈希函数

HashMap 默认使用一种叫做 SipHash 的哈希函数,它可以抵御涉及哈希表(hash table)1 的拒绝服务(Denial of Service, DoS)攻击。然而这并不是可用的最快的算法,不过为了更高的安全性值得付出一些性能的代价。如果性能监测显示此哈希函数非常慢,以致于你无法接受,你可以指定一个不同的 hasher 来切换为其它函数。hasher 是一个实现了 BuildHasher trait 的类型。第十章会讨论 trait 和如何实现它们。你并不需要从头开始实现你自己的 hasher;crates.io 有其他人分享的实现了许多常用哈希算法的 hasher 的库。

总结

vector、字符串和哈希 map 会在你的程序需要储存、访问和修改数据时帮助你。这里有一些你应该能够解决的练习问题:

  • 给定一系列数字,使用 vector 并返回这个列表的中位数(排列数组后位于中间的值)和众数(mode,出现次数最多的值;这里哈希 map 会很有帮助)。
  • 将字符串转换为 Pig Latin,也就是每一个单词的第一个辅音字母被移动到单词的结尾并增加 “ay”,所以 “first” 会变成 “irst-fay”。元音字母开头的单词则在结尾增加 “hay”(“apple” 会变成 “apple-hay”)。牢记 UTF-8 编码!
  • 使用哈希 map 和 vector,创建一个文本接口来允许用户向公司的部门中增加员工的名字。例如,“Add Sally to Engineering” 或 “Add Amir to Sales”。接着让用户获取一个部门的所有员工的列表,或者公司每个部门的所有员工按照字典序排列的列表。

标准库 API 文档中描述的这些类型的方法将有助于你进行这些练习!

我们已经开始接触可能会有失败操作的复杂程序了,这也意味着接下来是一个了解错误处理的绝佳时机!

错误处理

ch09-00-error-handling.md
commit 199ca99926f232ee7f581a917eada4b65ff21754

错误是软件中不可否认的事实,所以 Rust 有一些处理出错情况的特性。在许多情况下,Rust 要求你承认错误的可能性,并在你的代码编译前采取一些行动。这一要求使你的程序更加健壮,因为它可以确保你在将代码部署到生产环境之前就能发现错误并进行适当的处理。

Rust 将错误分为两大类:可恢复的recoverable)和 不可恢复的unrecoverable)错误。对于一个可恢复的错误,比如文件未找到的错误,我们很可能只想向用户报告问题并重试操作。不可恢复的错误总是 bug 出现的征兆,比如试图访问一个超过数组末端的位置,因此我们要立即停止程序。

大多数语言并不区分这两种错误,并采用类似异常这样方式统一处理它们。Rust 没有异常。相反,它有 Result<T, E> 类型,用于处理可恢复的错误,还有 panic! 宏,在程序遇到不可恢复的错误时停止执行。本章首先介绍 panic! 调用,接着会讲到如何返回 Result<T, E>。此外,我们将探讨在决定是尝试从错误中恢复还是停止执行时的注意事项。

panic! 处理不可恢复的错误

ch09-01-unrecoverable-errors-with-panic.md
commit 2921743516b3e2c0f45a95390e7b536e42f4af7c

突然有一天,代码出问题了,而你对此束手无策。对于这种情况,Rust 有 panic!宏。在实践中有两种方法造成 panic:执行会造成代码 panic 的操作(比如访问超过数组结尾的内容)或者显式调用 panic! 宏。这两种情况都会使程序 panic。通常情况下这些 panic 会打印出一个错误信息,展开并清理栈数据,然后退出。通过一个环境变量,你也可以让 Rust 在 panic 发生时打印调用堆栈(call stack)以便于定位 panic 的原因。

对应 panic 时的栈展开或终止

当出现 panic 时,程序默认会开始 展开unwinding),这意味着 Rust 会回溯栈并清理它遇到的每一个函数的数据,不过这个回溯并清理的过程有很多工作。另一种选择是直接 终止abort),这会不清理数据就退出程序。

那么程序所使用的内存需要由操作系统来清理。如果你需要项目的最终二进制文件越小越好,panic 时通过在 Cargo.toml[profile] 部分增加 panic = 'abort',可以由展开切换为终止。例如,如果你想要在 release 模式中 panic 时直接终止:

[profile.release]
panic = 'abort'

让我们在一个简单的程序中调用 panic!

文件名:src/main.rs

fn main() {
    panic!("crash and burn");
}

运行程序将会出现类似这样的输出:

$ cargo run
   Compiling panic v0.1.0 (file:///projects/panic)
    Finished dev [unoptimized + debuginfo] target(s) in 0.25s
     Running `target/debug/panic`
thread 'main' panicked at 'crash and burn', src/main.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

最后两行包含 panic! 调用造成的错误信息。第一行显示了 panic 提供的信息并指明了源码中 panic 出现的位置:src/main.rs:2:5 表明这是 src/main.rs 文件的第二行第五个字符。

在这个例子中,被指明的那一行是我们代码的一部分,而且查看这一行的话就会发现 panic! 宏的调用。在其他情况下,panic! 可能会出现在我们的代码所调用的代码中。错误信息报告的文件名和行号可能指向别人代码中的 panic! 宏调用,而不是我们代码中最终导致 panic! 的那一行。我们可以使用 panic! 被调用的函数的 backtrace 来寻找代码中出问题的地方。下面我们会详细介绍 backtrace 是什么。

使用 panic! 的 backtrace

让我们来看看另一个因为我们代码中的 bug 引起的别的库中 panic! 的例子,而不是直接的宏调用。示例 9-1 有一些尝试通过索引访问 vector 中元素的例子:

文件名:src/main.rs

fn main() {
    let v = vec![1, 2, 3];

    v[99];
}

示例 9-1:尝试访问超越 vector 结尾的元素,这会造成 panic!

这里尝试访问 vector 的第一百个元素(这里的索引是 99 因为索引从 0 开始),不过它只有三个元素。这种情况下 Rust 会 panic。[] 应当返回一个元素,不过如果传递了一个无效索引,就没有可供 Rust 返回的正确的元素。

C 语言中,尝试读取数据结构之后的值是未定义行为(undefined behavior)。你会得到任何对应数据结构中这个元素的内存位置的值,甚至是这些内存并不属于这个数据结构的情况。这被称为 缓冲区溢出buffer overread),并可能会导致安全漏洞,比如攻击者可以像这样操作索引来读取储存在数据结构之后不被允许的数据。

为了保护程序远离这类漏洞,如果尝试读取一个索引不存在的元素,Rust 会停止执行并拒绝继续。尝试运行上面的程序会出现如下:

$ cargo run
   Compiling panic v0.1.0 (file:///projects/panic)
    Finished dev [unoptimized + debuginfo] target(s) in 0.27s
     Running `target/debug/panic`
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 99', src/main.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

错误指向 main.rs 的第 4 行,这里我们尝试访问索引 99。下面的说明(note)行提醒我们可以设置 RUST_BACKTRACE 环境变量来得到一个 backtrace。backtrace 是一个执行到目前位置所有被调用的函数的列表。Rust 的 backtrace 跟其他语言中的一样:阅读 backtrace 的关键是从头开始读直到发现你编写的文件。这就是问题的发源地。这一行往上是你的代码所调用的代码;往下则是调用你的代码的代码。这些行可能包含核心 Rust 代码,标准库代码或用到的 crate 代码。让我们将 RUST_BACKTRACE 环境变量设置为任何不是 0 的值来获取 backtrace 看看。示例 9-2 展示了与你看到类似的输出:

$ RUST_BACKTRACE=1 cargo run
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 99', src/main.rs:4:5
stack backtrace:
   0: rust_begin_unwind
             at /rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/std/src/panicking.rs:584:5
   1: core::panicking::panic_fmt
             at /rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/panicking.rs:142:14
   2: core::panicking::panic_bounds_check
             at /rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/panicking.rs:84:5
   3: <usize as core::slice::index::SliceIndex<[T]>>::index
             at /rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/slice/index.rs:242:10
   4: core::slice::index::<impl core::ops::index::Index<I> for [T]>::index
             at /rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/slice/index.rs:18:9
   5: <alloc::vec::Vec<T,A> as core::ops::index::Index<I>>::index
             at /rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/alloc/src/vec/mod.rs:2591:9
   6: panic::main
             at ./src/main.rs:4:5
   7: core::ops::function::FnOnce::call_once
             at /rustc/e092d0b6b43f2de967af0887873151bb1c0b18d3/library/core/src/ops/function.rs:248:5
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.

示例 9-2:当设置 RUST_BACKTRACE 环境变量时 panic! 调用所生成的 backtrace 信息

这里有大量的输出!你实际看到的输出可能因不同的操作系统和 Rust 版本而有所不同。为了获取带有这些信息的 backtrace,必须启用 debug 标识。当不使用 --release 参数运行 cargo build 或 cargo run 时 debug 标识会默认启用,就像这里一样。

示例 9-2 的输出中,backtrace 的 12 行指向了我们项目中造成问题的行:src/main.rs 的第 4 行。如果你不希望程序 panic,第一个提到我们编写的代码行的位置是你应该开始调查的,以便查明是什么值如何在这个地方引起了 panic。在示例 9-1 中,我们故意编写会 panic 的代码来演示如何使用 backtrace,修复这个 panic 的方法就是不要尝试在一个只包含三个项的 vector 中请求索引是 100 的元素。当将来你的代码出现了 panic,你需要搞清楚在这特定的场景下代码中执行了什么操作和什么值导致了 panic,以及应当如何处理才能避免这个问题。

本章后面的小节 “要不要 panic!” 会再次回到 panic! 并讲解何时应该、何时不应该使用 panic! 来处理错误情况。接下来,我们来看看如何使用 Result 来从错误中恢复。

Result 处理可恢复的错误

ch09-02-recoverable-errors-with-result.md
commit 699adc6f5cb76f6e9d567ff0a57d8a844ac07a88

大部分错误并没有严重到需要程序完全停止执行。有时候,一个函数失败,仅仅就是因为一个容易理解和响应的原因。例如,如果因为打开一个并不存在的文件而失败,此时我们可能想要创建这个文件,而不是终止进程。

回忆一下第二章 “使用 Result 类型来处理潜在的错误” 部分中的那个 Result 枚举,它定义有如下两个成员,OkErr

#![allow(unused)]
fn main() {
enum Result<T, E> {
    Ok(T),
    Err(E),
}
}

TE 是泛型类型参数;第十章会详细介绍泛型。现在你需要知道的就是 T 代表成功时返回的 Ok 成员中的数据的类型,而 E 代表失败时返回的 Err 成员中的错误的类型。因为 Result 有这些泛型类型参数,我们可以将 Result 类型和标准库中为其定义的函数用于很多不同的场景,这些情况中需要返回的成功值和失败值可能会各不相同。

让我们调用一个返回 Result 的函数,因为它可能会失败:如示例 9-3 所示打开一个文件:

文件名:src/main.rs

use std::fs::File;

fn main() {
    let greeting_file_result = File::open("hello.txt");
}

示例 9-3:打开文件

File::open 的返回值是 Result<T, E>。泛型参数 T 会被 File::open 的实现放入成功返回值的类型 std::fs::File,这是一个文件句柄。错误返回值使用的 E 的类型是 std::io::Error。这些返回类型意味着 File::open 调用可能成功并返回一个可以读写的文件句柄。这个函数调用也可能会失败:例如,也许文件不存在,或者可能没有权限访问这个文件。File::open 函数需要一个方法在告诉我们成功与否的同时返回文件句柄或者错误信息。这些信息正好是 Result 枚举所代表的。

File::open 成功时,greeting_file_result 变量将会是一个包含文件句柄的 Ok 实例。当失败时,greeting_file_result 变量将会是一个包含了更多关于发生了何种错误的信息的 Err 实例。

我们需要在示例 9-3 的代码中增加根据 File::open 返回值进行不同处理的逻辑。示例 9-4 展示了一个使用基本工具处理 Result 的例子:第六章学习过的 match 表达式。

文件名:src/main.rs

use std::fs::File;

fn main() {
    let greeting_file_result = File::open("hello.txt");

    let greeting_file = match greeting_file_result {
        Ok(file) => file,
        Err(error) => panic!("Problem opening the file: {:?}", error),
    };
}

示例 9-4:使用 match 表达式处理可能会返回的 Result 成员

注意与 Option 枚举一样,Result 枚举和其成员也被导入到了 prelude 中,所以就不需要在 match 分支中的 OkErr 之前指定 Result::

这里我们告诉 Rust 当结果是 Ok 时,返回 Ok 成员中的 file 值,然后将这个文件句柄赋值给变量 greeting_filematch 之后,我们可以利用这个文件句柄来进行读写。

match 的另一个分支处理从 File::open 得到 Err 值的情况。在这种情况下,我们选择调用 panic! 宏。如果当前目录没有一个叫做 hello.txt 的文件,当运行这段代码时会看到如下来自 panic! 宏的输出:

$ cargo run
   Compiling error-handling v0.1.0 (file:///projects/error-handling)
    Finished dev [unoptimized + debuginfo] target(s) in 0.73s
     Running `target/debug/error-handling`
thread 'main' panicked at 'Problem opening the file: Os { code: 2, kind: NotFound, message: "No such file or directory" }', src/main.rs:8:23
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

一如既往,此输出准确地告诉了我们到底出了什么错。

匹配不同的错误

示例 9-4 中的代码不管 File::open 是因为什么原因失败都会 panic!。我们真正希望的是对不同的错误原因采取不同的行为:如果 File::open 因为文件不存在而失败,我们希望创建这个文件并返回新文件的句柄。如果 File::open 因为任何其他原因失败,例如没有打开文件的权限,我们仍然希望像示例 9-4 那样 panic!。让我们看看示例 9-5,其中 match 增加了另一个分支:

文件名:src/main.rs

use std::fs::File;
use std::io::ErrorKind;

fn main() {
    let greeting_file_result = File::open("hello.txt");

    let greeting_file = match greeting_file_result {
        Ok(file) => file,
        Err(error) => match error.kind() {
            ErrorKind::NotFound => match File::create("hello.txt") {
                Ok(fc) => fc,
                Err(e) => panic!("Problem creating the file: {:?}", e),
            },
            other_error => {
                panic!("Problem opening the file: {:?}", other_error);
            }
        },
    };
}

示例 9-5:使用不同的方式处理不同类型的错误

File::open 返回的 Err 成员中的值类型 io::Error,它是一个标准库中提供的结构体。这个结构体有一个返回 io::ErrorKind 值的 kind 方法可供调用。io::ErrorKind 是一个标准库提供的枚举,它的成员对应 io 操作可能导致的不同错误类型。我们感兴趣的成员是 ErrorKind::NotFound,它代表尝试打开的文件并不存在。这样,match 就匹配完 greeting_file_result 了,不过对于 error.kind() 还有一个内层 match

我们希望在内层 match 中检查的条件是 error.kind() 的返回值是否为 ErrorKindNotFound 成员。如果是,则尝试通过 File::create 创建文件。然而因为 File::create 也可能会失败,还需要增加一个内层 match 语句。当文件不能被打开,会打印出一个不同的错误信息。外层 match 的最后一个分支保持不变,这样对任何除了文件不存在的错误会使程序 panic。

不同于使用 matchResult<T, E>

这里有好多 matchmatch 确实很强大,不过也非常的原始。第十三章我们会介绍闭包(closure),它会和定义在 Result<T, E> 中的很多方法一起使用。在处理代码中的 Result<T, E> 值时,相比于使用 match ,使用这些方法会更加简洁。

例如,这是另一个编写与示例 9-5 逻辑相同但是使用闭包和 unwrap_or_else 方法的例子:

use std::fs::File;
use std::io::ErrorKind;

fn main() {
    let greeting_file = File::open("hello.txt").unwrap_or_else(|error| {
        if error.kind() == ErrorKind::NotFound {
            File::create("hello.txt").unwrap_or_else(|error| {
                panic!("Problem creating the file: {:?}", error);
            })
        } else {
            panic!("Problem opening the file: {:?}", error);
        }
    });
}

虽然这段代码有着如示例 9-5 一样的行为,但并没有包含任何 match 表达式且更容易阅读。在阅读完第十三章后再回到这个例子,并查看标准库文档 unwrap_or_else 方法都做了什么操作。在处理错误时,还有很多这类方法可以消除大量嵌套的 match 表达式。

失败时 panic 的简写:unwrapexpect

match 能够胜任它的工作,不过它可能有点冗长并且不总是能很好的表明其意图。Result<T, E> 类型定义了很多辅助方法来处理各种情况。其中之一叫做 unwrap,它的实现就类似于示例 9-4 中的 match 语句。如果 Result 值是成员 Okunwrap 会返回 Ok 中的值。如果 Result 是成员 Errunwrap 会为我们调用 panic!。这里是一个实践 unwrap 的例子:

文件名:src/main.rs

use std::fs::File;

fn main() {
    let greeting_file = File::open("hello.txt").unwrap();
}

如果调用这段代码时不存在 hello.txt 文件,我们将会看到一个 unwrap 调用 panic! 时提供的错误信息:

thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value: Os {
code: 2, kind: NotFound, message: "No such file or directory" }',
src/main.rs:4:49

还有另一个类似于 unwrap 的方法它还允许我们选择 panic! 的错误信息:expect。使用 expect 而不是 unwrap 并提供一个好的错误信息可以表明你的意图并更易于追踪 panic 的根源。expect 的语法看起来像这样:

文件名:src/main.rs

use std::fs::File;

fn main() {
    let greeting_file = File::open("hello.txt")
        .expect("hello.txt should be included in this project");
}

expectunwrap 的使用方式一样:返回文件句柄或调用 panic! 宏。expect 在调用 panic! 时使用的错误信息将是我们传递给 expect 的参数,而不像 unwrap 那样使用默认的 panic! 信息。它看起来像这样:

thread 'main' panicked at 'hello.txt should be included in this project: Error
{ repr: Os { code: 2, message: "No such file or directory" } }',
src/libcore/result.rs:906:4

在生产级别的代码中,大部分 Rustaceans 选择 expect 而不是 unwrap 并提供更多关于为何操作期望是一直成功的上下文。如此如果该假设真的被证明是错的,你也有更多的信息来用于调试。

传播错误

当编写一个其实先会调用一些可能会失败的操作的函数时,除了在这个函数中处理错误外,还可以选择让调用者知道这个错误并决定该如何处理。这被称为 传播propagating)错误,这样能更好的控制代码调用,因为比起你代码所拥有的上下文,调用者可能拥有更多信息或逻辑来决定应该如何处理错误。

例如,示例 9-6 展示了一个从文件中读取用户名的函数。如果文件不存在或不能读取,这个函数会将这些错误返回给调用它的代码:

文件名:src/main.rs

#![allow(unused)]
fn main() {
use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
    let username_file_result = File::open("hello.txt");

    let mut username_file = match username_file_result {
        Ok(file) => file,
        Err(e) => return Err(e),
    };

    let mut username = String::new();

    match username_file.read_to_string(&mut username) {
        Ok(_) => Ok(username),
        Err(e) => Err(e),
    }
}
}

示例 9-6:一个函数使用 match 将错误返回给代码调用者

这个函数可以编写成更加简短的形式,不过我们以大量手动处理开始以便探索错误处理;在最后我们会展示更短的形式。让我们看看函数的返回值:Result<String, io::Error>。这意味着函数返回一个 Result<T, E> 类型的值,其中泛型参数 T 的具体类型是 String,而 E 的具体类型是 io::Error

如果这个函数没有出任何错误成功返回,函数的调用者会收到一个包含 StringOk 值 —— 函数从文件中读取到的用户名。如果函数遇到任何错误,函数的调用者会收到一个 Err 值,它储存了一个包含更多这个问题相关信息的 io::Error 实例。这里选择 io::Error 作为函数的返回值是因为它正好是函数体中那两个可能会失败的操作的错误返回值:File::open 函数和 read_to_string 方法。

函数体以调用 File::open 函数开始。接着使用 match 处理返回值 Result,类似示例 9-4,如果 File::open 成功了,模式变量 file 中的文件句柄就变成了可变变量 username_file 中的值,接着函数继续执行。在 Err 的情况下,我们没有调用 panic!,而是使用 return 关键字提前结束整个函数,并将来自 File::open 的错误值(现在在模式变量 e 中)作为函数的错误值传回给调用者。

所以,如果在 username_file 中有一个文件句柄,该函数随后会在变量 username 中创建一个新的 String 并调用文件句柄 username_file 上的 read_to_string 方法,以将文件的内容读入 usernameread_to_string 方法也返回一个 Result,因为它可能会失败,哪怕是 File::open 已经成功了。因此,我们需要另一个 match 来处理这个 Result:如果 read_to_string 执行成功,那么这个函数也就成功了,我们将从文件中读取的用户名返回,此时用户名位于被封装进 Okusername 中。如果 read_to_string 执行失败,则像之前处理 File::open 的返回值的 match 那样返回错误值。然而,我们无需显式调用 return 语句,因为这是函数的最后一个表达式。

调用这个函数的代码最终会得到一个包含用户名的 Ok 值,或者一个包含 io::ErrorErr 值。我们无从得知调用者会如何处理这些值。例如,如果他们得到了一个 Err 值,他们可能会选择 panic! 并使程序崩溃、使用一个默认的用户名或者从文件之外的地方寻找用户名。我们没有足够的信息知晓调用者具体会如何尝试,所以将所有的成功或失败信息向上传播,让他们选择合适的处理方法。

这种传播错误的模式在 Rust 是如此的常见,以至于 Rust 提供了 ? 问号运算符来使其更易于处理。

传播错误的简写:? 运算符

示例 9-7 展示了一个 read_username_from_file 的实现,它实现了与示例 9-6 中的代码相同的功能,不过这个实现使用了 ? 运算符:

文件名:src/main.rs

#![allow(unused)]
fn main() {
use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
    let mut username_file = File::open("hello.txt")?;
    let mut username = String::new();
    username_file.read_to_string(&mut username)?;
    Ok(username)
}
}

示例 9-7:一个使用 ? 运算符向调用者返回错误的函数

Result 值之后的 ? 被定义为与示例 9-6 中定义的处理 Result 值的 match 表达式有着完全相同的工作方式。如果 Result 的值是 Ok,这个表达式将会返回 Ok 中的值而程序将继续执行。如果值是 ErrErr 将作为整个函数的返回值,就好像使用了 return 关键字一样,这样错误值就被传播给了调用者。

示例 9-6 中的 match 表达式与 ? 运算符所做的有一点不同:? 运算符所使用的错误值被传递给了 from 函数,它定义于标准库的 From trait 中,其用来将错误从一种类型转换为另一种类型。当 ? 运算符调用 from 函数时,收到的错误类型被转换为由当前函数返回类型所指定的错误类型。这在当函数返回单个错误类型来代表所有可能失败的方式时很有用,即使其可能会因很多种原因失败。

例如,我们可以将示例 9-7 中的 read_username_from_file 函数修改为返回一个自定义的 OurError 错误类型。如果我们也定义了 impl From<io::Error> for OurError 来从 io::Error 构造一个 OurError 实例,那么 read_username_from_file 函数体中的 ? 运算符调用会调用 from 并转换错误而无需在函数中增加任何额外的代码。

在示例 9-7 的上下文中,File::open 调用结尾的 ? 会将 Ok 中的值返回给变量 username_file。如果发生了错误,? 运算符会使整个函数提前返回并将任何 Err 值返回给调用代码。同理也适用于 read_to_string 调用结尾的 ?

? 运算符消除了大量样板代码并使得函数的实现更简单。我们甚至可以在 ? 之后直接使用链式方法调用来进一步缩短代码,如示例 9-8 所示:

文件名:src/main.rs

#![allow(unused)]
fn main() {
use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
    let mut username = String::new();

    File::open("hello.txt")?.read_to_string(&mut username)?;

    Ok(username)
}
}

示例 9-8:问号运算符之后的链式方法调用

username 中创建新的 String 被放到了函数开头;这一部分没有变化。我们对 File::open("hello.txt")? 的结果直接链式调用了 read_to_string,而不再创建变量 username_file。仍然需要 read_to_string 调用结尾的 ?,而且当 File::openread_to_string 都成功没有失败时返回包含用户名 usernameOk 值。其功能再一次与示例 9-6 和示例 9-7 保持一致,不过这是一个与众不同且更符合工程学(ergonomic)的写法。

示例 9-9 展示了一个使用 fs::read_to_string 的更为简短的写法:

文件名:src/main.rs

#![allow(unused)]
fn main() {
use std::fs;
use std::io;

fn read_username_from_file() -> Result<String, io::Error> {
    fs::read_to_string("hello.txt")
}
}

示例 9-9: 使用 fs::read_to_string 而不是打开后读取文件

将文件读取到一个字符串是相当常见的操作,所以 Rust 提供了名为 fs::read_to_string 的函数,它会打开文件、新建一个 String、读取文件的内容,并将内容放入 String,接着返回它。当然,这样做就没有展示所有这些错误处理的机会了,所以我们最初就选择了艰苦的道路。

哪里可以使用 ? 运算符

? 运算符只能被用于返回值与 ? 作用的值相兼容的函数。因为 ? 运算符被定义为从函数中提早返回一个值,这与示例 9-6 中的 match 表达式有着完全相同的工作方式。示例 9-6 中 match 作用于一个 Result 值,提早返回的分支返回了一个 Err(e) 值。函数的返回值必须是 Result 才能与这个 return 相兼容。

在示例 9-10 中,让我们看看在返回值不兼容的 main 函数中使用 ? 运算符会得到什么错误:

文件名:src/main.rs

use std::fs::File;

fn main() {
    let greeting_file = File::open("hello.txt")?;
}

示例 9-10: 尝试在返回 ()main 函数中使用 ? 的代码不能编译

这段代码打开一个文件,这可能会失败。? 运算符作用于 File::open 返回的 Result 值,不过 main 函数的返回类型是 () 而不是 Result。当编译这些代码,会得到如下错误信息:

$ cargo run
   Compiling error-handling v0.1.0 (file:///projects/error-handling)
error[E0277]: the `?` operator can only be used in a function that returns `Result` or `Option` (or another type that implements `FromResidual`)
 --> src/main.rs:4:48
  |
3 | fn main() {
  | --------- this function should return `Result` or `Option` to accept `?`
4 |     let greeting_file = File::open("hello.txt")?;
  |                                                ^ cannot use the `?` operator in a function that returns `()`
  |
  = help: the trait `FromResidual<Result<Infallible, std::io::Error>>` is not implemented for `()`

For more information about this error, try `rustc --explain E0277`.
error: could not compile `error-handling` due to previous error

这个错误指出只能在返回 Result 或者其它实现了 FromResidual 的类型的函数中使用 ? 运算符。

为了修复这个错误,有两个选择。一个是,如果没有限制的话将函数的返回值改为 Result<T, E>。另一个是使用 matchResult<T, E> 的方法中合适的一个来处理 Result<T, E>

错误信息也提到 ? 也可用于 Option<T> 值。如同对 Result 使用 ? 一样,只能在返回 Option 的函数中对 Option 使用 ?。在 Option<T> 上调用 ? 运算符的行为与 Result<T, E> 类似:如果值是 None,此时 None 会从函数中提前返回。如果值是 SomeSome 中的值作为表达式的返回值同时函数继续。示例 9-11 中有一个从给定文本中返回第一行最后一个字符的函数的例子:

fn last_char_of_first_line(text: &str) -> Option<char> {
    text.lines().next()?.chars().last()
}

fn main() {
    assert_eq!(
        last_char_of_first_line("Hello, world\nHow are you today?"),
        Some('d')
    );

    assert_eq!(last_char_of_first_line(""), None);
    assert_eq!(last_char_of_first_line("\nhi"), None);
}

示例 9-11: 在 Option<T> 值上使用 ? 运算符

这个函数返回 Option<char> 因为它可能会在这个位置找到一个字符,也可能没有字符。这段代码获取 text 字符串 slice 作为参数并调用其 lines 方法,这会返回一个字符串中每一行的迭代器。因为函数希望检查第一行,所以调用了迭代器 next 来获取迭代器中第一个值。如果 text 是空字符串,next 调用会返回 None,此时我们可以使用 ? 来停止并从 last_char_of_first_line 返回 None。如果 text 不是空字符串,next 会返回一个包含 text 中第一行的字符串 slice 的 Some 值。

? 会提取这个字符串 slice,然后可以在字符串 slice 上调用 chars 来获取字符的迭代器。我们感兴趣的是第一行的最后一个字符,所以可以调用 last 来返回迭代器的最后一项。这是一个 Option,因为有可能第一行是一个空字符串,例如 text 以一个空行开头而后面的行有文本,像是 "\nhi"。不过,如果第一行有最后一个字符,它会返回在一个 Some 成员中。? 运算符作用于其中给了我们一个简洁的表达这种逻辑的方式。如果我们不能在 Option 上使用 ? 运算符,则不得不使用更多的方法调用或者 match 表达式来实现这些逻辑。

注意你可以在返回 Result 的函数中对 Result 使用 ? 运算符,可以在返回 Option 的函数中对 Option 使用 ? 运算符,但是不可以混合搭配。? 运算符不会自动将 Result 转化为 Option,反之亦然;在这些情况下,可以使用类似 Resultok 方法或者 Optionok_or 方法来显式转换。

目前为止,我们所使用的所有 main 函数都返回 ()main 函数是特殊的因为它是可执行程序的入口点和退出点,为了使程序能正常工作,其可以返回的类型是有限制的。

幸运的是 main 函数也可以返回 Result<(), E>,示例 9-12 中的代码来自示例 9-10 不过修改了 main 的返回值为 Result<(), Box<dyn Error>> 并在结尾增加了一个 Ok(()) 作为返回值。这段代码可以编译:

use std::error::Error;
use std::fs::File;

fn main() -> Result<(), Box<dyn Error>> {
    let greeting_file = File::open("hello.txt")?;

    Ok(())
}

示例 9-12: 修改 main 返回 Result<(), E> 允许对 Result 值使用 ? 运算符

Box<dyn Error> 类型是一个 trait 对象trait object)第十七章 顾及不同类型值的 trait 对象” 部分会做介绍。目前可以将 Box<dyn Error> 理解为 “任何类型的错误”。在返回 Box<dyn Error> 错误类型 main 函数中对 Result 使用 ? 是允许的,因为它允许任何 Err 值提前返回。即便 main 函数体从来只会返回 std::io::Error 错误类型,通过指定 Box<dyn Error>,这个签名也仍是正确的,甚至当 main 函数体中增加更多返回其他错误类型的代码时也是如此。

main 函数返回 Result<(), E>,如果 main 返回 Ok(()) 可执行程序会以 0 值退出,而如果 main 返回 Err 值则会以非零值退出;成功退出的程序会返回整数 0,运行错误的程序会返回非 0 的整数。Rust 也会从二进制程序中返回与这个惯例相兼容的整数。

main 函数也可以返回任何实现了 std::process::Termination trait 的类型,它包含了一个返回 ExitCodereport 函数。请查阅标准库文档了解更多为自定义类型实现 Termination trait 的细节。

现在我们讨论过了调用 panic! 或返回 Result 的细节,是时候回到它们各自适合哪些场景的话题了。

要不要 panic!

ch09-03-to-panic-or-not-to-panic.md
commit a87db22c297ff9b029f4458c8f303606df767c0b

那么,该如何决定何时应该 panic! 以及何时应该返回 Result 呢?如果代码 panic,就没有恢复的可能。你可以选择对任何错误场景都调用 panic!,不管是否有可能恢复,不过这样就是你代替调用者决定了这是不可恢复的。选择返回 Result 值的话,就将选择权交给了调用者,而不是代替他们做出决定。调用者可能会选择以符合他们场景的方式尝试恢复,或者也可能干脆就认为 Err 是不可恢复的,所以他们也可能会调用 panic! 并将可恢复的错误变成了不可恢复的错误。因此返回 Result 是定义可能会失败的函数的一个好的默认选择。

在一些类似示例、原型代码(prototype code)和测试中,panic 比返回 Result 更为合适,不过它们并不常见。让我们讨论一下为何在示例、代码原型和测试中,以及那些人们认为不会失败而编译器不这么看的情况下,panic 是合适的。章节最后会总结一些在库代码中如何决定是否要 panic 的通用指导原则。

示例、代码原型和测试都非常适合 panic

当你编写一个示例来展示一些概念时,在拥有健壮的错误处理代码的同时也会使得例子不那么明确。例如,调用一个类似 unwrap 这样可能 panic! 的方法可以被理解为一个你实际希望程序处理错误方式的占位符,它根据其余代码运行方式可能会各不相同。

类似地,在我们准备好决定如何处理错误之前,unwrapexpect方法在原型设计时非常方便。当我们准备好让程序更加健壮时,它们会在代码中留下清晰的标记。

如果方法调用在测试中失败了,我们希望这个测试都失败,即便这个方法并不是需要测试的功能。因为 panic! 会将测试标记为失败,此时调用 unwrapexpect 是恰当的。

当我们比编译器知道更多的情况

当你有一些其他的逻辑来确保 Result 会是 Ok 值时,调用 unwrap 或者 expect 也是合适的,虽然编译器无法理解这种逻辑。你仍然需要处理一个 Result 值:即使在你的特定情况下逻辑上是不可能的,你所调用的任何操作仍然有可能失败。如果通过人工检查代码来确保永远也不会出现 Err 值,那么调用 unwrap 也是完全可以接受的,这里是一个例子:

fn main() {
    use std::net::IpAddr;

    let home: IpAddr = "127.0.0.1"
        .parse()
        .expect("Hardcoded IP address should be valid");
}

我们通过解析一个硬编码的字符来创建一个 IpAddr 实例。可以看出 127.0.0.1 是一个有效的 IP 地址,所以这里使用 expect 是可以接受的。然而,拥有一个硬编码的有效的字符串也不能改变 parse 方法的返回值类型:它仍然是一个 Result 值,而编译器仍然会要求我们处理这个 Result,好像还是有可能出现 Err 成员那样。这是因为编译器还没有智能到可以识别出这个字符串总是一个有效的 IP 地址。如果 IP 地址字符串来源于用户而不是硬编码进程序中的话,那么就 确实 有失败的可能性,这时就绝对需要我们以一种更健壮的方式处理 Result 了。提及这个 IP 地址是硬编码的假设会促使我们将来把 expect 替换为更好的错误处理,我们应该从其它代码获取 IP 地址。

错误处理指导原则

在当有可能会导致有害状态的情况下建议使用 panic! —— 在这里,有害状态是指当一些假设、保证、协议或不可变性被打破的状态,例如无效的值、自相矛盾的值或者被传递了不存在的值 —— 外加如下几种情况:

  • 有害状态是非预期的行为,与偶尔会发生的行为相对,比如用户输入了错误格式的数据。
  • 在此之后代码的运行依赖于不处于这种有害状态,而不是在每一步都检查是否有问题。
  • 没有可行的手段来将有害状态信息编码进所使用的类型中的情况。我们会在第十七章 “将状态和行为编码为类型” 部分通过一个例子来说明我们的意思。

如果别人调用你的代码并传递了一个没有意义的值,尽最大可能返回一个错误,如此库的用户就可以决定在这种情况下该如何处理。然而在继续执行代码是不安全或有害的情况下,最好的选择可能是调用 panic! 并警告库的用户他们的代码中有 bug,这样他们就会在开发时进行修复。类似的,如果你正在调用不受你控制的外部代码,并且它返回了一个你无法修复的无效状态,那么 panic! 往往是合适的。

然而当错误预期会出现时,返回 Result 仍要比调用 panic! 更为合适。这样的例子包括解析器接收到格式错误的数据,或者 HTTP 请求返回了一个表明触发了限流的状态。在这些例子中,应该通过返回 Result 来表明失败预期是可能的,这样将有害状态向上传播,调用者就可以决定该如何处理这个问题。使用 panic! 来处理这些情况就不是最好的选择。

当你的代码在进行一个使用无效值进行调用时可能将用户置于风险中的操作时,代码应该首先验证值是有效的,并在其无效时 panic!。这主要是出于安全的原因:尝试操作无效数据会暴露代码漏洞,这就是标准库在尝试越界访问数组时会 panic! 的主要原因:尝试访问不属于当前数据结构的内存是一个常见的安全隐患。函数通常都遵循 契约contracts):它们的行为只有在输入满足特定条件时才能得到保证。当违反契约时 panic 是有道理的,因为这通常代表调用方的 bug,而且这也不是那种你希望所调用的代码必须处理的错误。事实上所调用的代码也没有合理的方式来恢复,而是需要调用方的 程序员 修复其代码。函数的契约,尤其是当违反它会造成 panic 的契约,应该在函数的 API 文档中得到解释。

虽然在所有函数中都拥有许多错误检查是冗长而烦人的。幸运的是,可以利用 Rust 的类型系统(以及编译器的类型检查)为你进行很多检查。如果函数有一个特定类型的参数,可以在知晓编译器已经确保其拥有一个有效值的前提下进行你的代码逻辑。例如,如果你使用了一个并不是 Option 的类型,则程序期望它是 有值 的并且不是 空值。你的代码无需处理 SomeNone 这两种情况,它只会有一种情况就是绝对会有一个值。尝试向函数传递空值的代码甚至根本不能编译,所以你的函数在运行时没有必要判空。另外一个例子是使用像 u32 这样的无符号整型,也会确保它永远不为负。

创建自定义类型进行有效性验证

让我们使用 Rust 类型系统的思想来进一步确保值的有效性,并尝试创建一个自定义类型以进行验证。回忆一下第二章的猜猜看游戏,我们的代码要求用户猜测一个 1 到 100 之间的数字,在将其与秘密数字做比较之前我们从未验证用户的猜测是位于这两个数字之间的,我们只验证它是否为正。在这种情况下,其影响并不是很严重:“Too high” 或 “Too low” 的输出仍然是正确的。但是这是一个很好的引导用户得出有效猜测的辅助,例如当用户猜测一个超出范围的数字或者输入字母时采取不同的行为。

一种实现方式是将猜测解析成 i32 而不仅仅是 u32,来默许输入负数,接着检查数字是否在范围内:

use rand::Rng;
use std::cmp::Ordering;
use std::io;

fn main() {
    println!("Guess the number!");

    let secret_number = rand::thread_rng().gen_range(1..=100);

    loop {
        // --snip--

        println!("Please input your guess.");

        let mut guess = String::new();

        io::stdin()
            .read_line(&mut guess)
            .expect("Failed to read line");

        let guess: i32 = match guess.trim().parse() {
            Ok(num) => num,
            Err(_) => continue,
        };

        if guess < 1 || guess > 100 {
            println!("The secret number will be between 1 and 100.");
            continue;
        }

        match guess.cmp(&secret_number) {
            // --snip--
            Ordering::Less => println!("Too small!"),
            Ordering::Greater => println!("Too big!"),
            Ordering::Equal => {
                println!("You win!");
                break;
            }
        }
    }
}

if 表达式检查了值是否超出范围,告诉用户出了什么问题,并调用 continue 开始下一次循环,请求另一个猜测。if 表达式之后,就可以在知道 guess 在 1 到 100 之间的情况下与秘密数字作比较了。

然而,这并不是一个理想的解决方案:如果让程序仅仅处理 1 到 100 之间的值是一个绝对需要满足的要求,而且程序中的很多函数都有这样的要求,在每个函数中都有这样的检查将是非常冗余的(并可能潜在的影响性能)。

相反我们可以创建一个新类型来将验证放入创建其实例的函数中,而不是到处重复这些检查。这样就可以安全地在函数签名中使用新类型并相信它们接收到的值。示例 9-13 中展示了一个定义 Guess 类型的方法,只有在 new 函数接收到 1 到 100 之间的值时才会创建 Guess 的实例:

#![allow(unused)]
fn main() {
pub struct Guess {
    value: i32,
}

impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1 || value > 100 {
            panic!("Guess value must be between 1 and 100, got {}.", value);
        }

        Guess { value }
    }

    pub fn value(&self) -> i32 {
        self.value
    }
}
}

示例 9-13:一个 Guess 类型,它只在值位于 1 和 100 之间时才继续

首先,我们定义了一个包含 i32 类型字段 value 的结构体 Guess。这里是储存猜测值的地方。

接着在 Guess 上实现了一个叫做 new 的关联函数来创建 Guess 的实例。new 定义为接收一个 i32 类型的参数 value 并返回一个 Guessnew 函数中代码的测试确保了其值是在 1 到 100 之间的。如果 value 没有通过测试则调用 panic!,这会警告调用这个函数的程序员有一个需要修改的 bug,因为创建一个 value 超出范围的 Guess 将会违反 Guess::new 所遵循的契约。Guess::new 会出现 panic 的条件应该在其公有 API 文档中被提及;第十四章会涉及到在 API 文档中表明 panic! 可能性的相关规则。如果 value 通过了测试,我们新建一个 Guess,其字段 value 将被设置为参数 value 的值,接着返回这个 Guess

接着,我们实现了一个借用了 self 的方法 value,它没有任何其他参数并返回一个 i32。这类方法有时被称为 getter,因为它的目的就是返回对应字段的数据。这样的公有方法是必要的,因为 Guess 结构体的 value 字段是私有的。私有的字段 value 是很重要的,这样使用 Guess 结构体的代码将不允许直接设置 value 的值:调用者 必须 使用 Guess::new 方法来创建一个 Guess 的实例,这就确保了不会存在一个 value 没有通过 Guess::new 函数的条件检查的 Guess

于是,一个接收(或返回)1 到 100 之间数字的函数就可以声明为接收(或返回) Guess的实例,而不是 i32,同时其函数体中也无需进行任何额外的检查。

总结

Rust 的错误处理功能被设计为帮助你编写更加健壮的代码。panic! 宏代表一个程序无法处理的状态,并停止执行而不是使用无效或不正确的值继续处理。Rust 类型系统的 Result 枚举代表操作可能会在一种可以恢复的情况下失败。可以使用 Result 来告诉代码调用者他需要处理潜在的成功或失败。在适当的场景使用 panic!Result 将会使你的代码在面对不可避免的错误时显得更加可靠。

现在我们已经见识过了标准库中 OptionResult 泛型枚举的能力了,在下一章让我们聊聊泛型是如何工作的,以及如何在你的代码中使用它们。

泛型、Trait 和生命周期

ch10-00-generics.md
commit 4aa96a3d20570f868bd20e8e3e865b047284be30

每一个编程语言都有高效处理重复概念的工具。在 Rust 中其工具之一就是 泛型generics)。泛型是具体类型或其他属性的抽象替代。我们可以表达泛型的属性,比如它们的行为或如何与其他泛型相关联,而不需要在编写和编译代码时知道它们在这里实际上代表什么。

函数可以获取一些不同于 i32String 这样具体类型的泛型参数,就像一个获取未知类型值的函数可以对多种具体类型的值运行同一段代码一样。事实上我们已经使用过第六章的 Option<T>,第八章的 Vec<T>HashMap<K, V>,以及第九章的 Result<T, E> 这些泛型了。本章会探索如何使用泛型定义我们自己的类型、函数和方法!

首先,我们将回顾一下提取函数以减少代码重复的机制。接下来,我们将使用相同的技术,从两个仅参数类型不同的函数中创建一个泛型函数。我们也会讲到结构体和枚举定义中的泛型。

之后,我们讨论 trait,这是一个定义泛型行为的方法。trait 可以与泛型结合来将泛型限制为只接受拥有特定行为的类型,而不是任意类型。

最后介绍 生命周期lifetimes),它是一类允许我们向编译器提供引用如何相互关联的泛型。Rust 的生命周期功能允许在很多场景下借用值的同时仍然使编译器能够检查这些引用的有效性。

提取函数来减少重复

泛型允许我们使用一个可以代表多种类型的占位符来替换特定类型,以此来减少代码冗余。在深入了解泛型的语法之前,我们首先来看一种没有使用泛型的减少冗余的方法,即提取一个函数。在这个函数中,我们用一个可以代表多种值的占位符来替换具体的值。接着我们使用相同的技术来提取一个泛型函数!!通过学习如何识别并提取可以整合进一个函数的重复代码,你也会开始识别出可以使用泛型的重复代码。

让我们从下面这个这个寻找列表中最大值的小程序开始,如示例 10-1 所示:

文件名:src/main.rs

fn main() {
    let number_list = vec![34, 50, 25, 100, 65];

    let mut largest = &number_list[0];

    for number in &number_list {
        if number > largest {
            largest = number;
        }
    }

    println!("The largest number is {}", largest);
    assert_eq!(*largest, 100);
}

示例 10-1:在一个数字列表中寻找最大值的函数

这段代码获取一个整型列表,存放在变量 number_list 中。它将列表的第一个数字的引用放入了变量 largest 中。接着遍历了列表中的所有数字,如果当前值大于 largest 中储存的值,将 largest 替换为这个值。如果当前值小于或者等于目前为止的最大值,largest 保持不变。当列表中所有值都被考虑到之后,largest 将会指向最大值,在这里也就是 100。

我们的任务是在两个不同的数字列表中寻找最大值。为此我们可以选择重复示例 10-1 中的代码在程序的两个不同位置使用相同的逻辑,如示例 10-2 所示:

文件名:src/main.rs

fn main() {
    let number_list = vec![34, 50, 25, 100, 65];

    let mut largest = &number_list[0];

    for number in &number_list {
        if number > largest {
            largest = number;
        }
    }

    println!("The largest number is {}", largest);

    let number_list = vec![102, 34, 6000, 89, 54, 2, 43, 8];

    let mut largest = &number_list[0];

    for number in &number_list {
        if number > largest {
            largest = number;
        }
    }

    println!("The largest number is {}", largest);
}

示例 10-2:寻找 两个 数字列表最大值的代码

虽然代码能够执行,但是重复的代码是冗余且容易出错的,更新逻辑时我们不得不记住需要修改多处地方的代码。

为了消除重复,我们要创建一层抽象,定义一个处理任意整型列表作为参数的函数。这个方案使得代码更简洁,并且表现了寻找任意列表中最大值这一概念。

在示例 10-3 的程序中将寻找最大值的代码提取到了一个叫做 largest 的函数中。接着我们调用了示例 10-2 中寻找两个列表中最大值的函数。之后也可以将该函数用于任何可能的 i32 值的列表。

文件名:src/main.rs

fn largest(list: &[i32]) -> &i32 {
    let mut largest = &list[0];

    for item in list {
        if item > largest {
            largest = item;
        }
    }

    largest
}

fn main() {
    let number_list = vec![34, 50, 25, 100, 65];

    let result = largest(&number_list);
    println!("The largest number is {}", result);
    assert_eq!(*result, 100);

    let number_list = vec![102, 34, 6000, 89, 54, 2, 43, 8];

    let result = largest(&number_list);
    println!("The largest number is {}", result);
    assert_eq!(*result, 6000);
}

示例 10-3:抽象后的寻找两个数字列表最大值的代码

largest 函数有一个参数 list,它代表会传递给函数的任何具体的 i32值的 slice。函数定义中的 list 代表任何 &[i32]。当调用 largest 函数时,其代码实际上运行于我们传递的特定值上。

总的来说,从示例 10-2 到示例 10-3 中涉及的机制经历了如下几步:

  1. 找出重复代码。
  2. 将重复代码提取到了一个函数中,并在函数签名中指定了代码中的输入和返回值。
  3. 将重复代码的两个实例,改为调用函数。

接下来我们会使用相同的步骤通过泛型来减少重复。与函数体可以处理任意的 list 而不是具体的值一样,泛型也允许代码处理任意类型。

如果我们有两个函数,一个寻找一个 i32 值的 slice 中的最大项而另一个寻找 char 值的 slice 中的最大项该怎么办?该如何消除重复呢?让我们拭目以待!

泛型数据类型

ch10-01-syntax.md
commit f2a78f64b668f63f581203c6bac509903f7c00ee

我们可以使用泛型为像函数签名或结构体这样的项创建定义,这样它们就可以用于多种不同的具体数据类型。让我们看看如何使用泛型定义函数、结构体、枚举和方法,然后我们将讨论泛型如何影响代码性能。

在函数定义中使用泛型

当使用泛型定义函数时,本来在函数签名中指定参数和返回值的类型的地方,会改用泛型来表示。采用这种技术,使得代码适应性更强,从而为函数的调用者提供更多的功能,同时也避免了代码的重复。

回到 largest 函数,示例 10-4 中展示了两个函数,它们的功能都是寻找 slice 中最大值。接着我们使用泛型将其合并为一个函数。

文件名:src/main.rs

fn largest_i32(list: &[i32]) -> &i32 {
    let mut largest = &list[0];

    for item in list {
        if item > largest {
            largest = item;
        }
    }

    largest
}

fn largest_char(list: &[char]) -> &char {
    let mut largest = &list[0];

    for item in list {
        if item > largest {
            largest = item;
        }
    }

    largest
}

fn main() {
    let number_list = vec![34, 50, 25, 100, 65];

    let result = largest_i32(&number_list);
    println!("The largest number is {}", result);
    assert_eq!(*result, 100);

    let char_list = vec!['y', 'm', 'a', 'q'];

    let result = largest_char(&char_list);
    println!("The largest char is {}", result);
    assert_eq!(*result, 'y');
}

示例 10-4:两个函数,不同点只是名称和签名类型

largest_i32 函数是从示例 10-3 中摘出来的,它用来寻找 slice 中最大的 i32largest_char 函数寻找 slice 中最大的 char。因为两者函数体的代码是一样的,我们可以定义一个函数,再引进泛型参数来消除这种重复。

为了参数化这个新函数中的这些类型,我们需要为类型参数命名,道理和给函数的形参起名一样。任何标识符都可以作为类型参数的名字。这里选用 T,因为传统上来说,Rust 的类型参数名字都比较短,通常仅为一个字母,同时,Rust 类型名的命名规范是首字母大写驼峰式命名法(UpperCamelCase)。T 作为 “type” 的缩写是大部分 Rust 程序员的首选。

如果要在函数体中使用参数,就必须在函数签名中声明它的名字,好让编译器知道这个名字指代的是什么。同理,当在函数签名中使用一个类型参数时,必须在使用它之前就声明它。为了定义泛型版本的 largest 函数,类型参数声明位于函数名称与参数列表中间的尖括号 <> 中,像这样:

fn largest<T>(list: &[T]) -> &T {

可以这样理解这个定义:函数 largest 有泛型类型 T。它有个参数 list,其类型是元素为 T 的 slice。largest 函数会返回一个与 T 相同类型的引用。

示例 10-5 中的 largest 函数在它的签名中使用了泛型,统一了两个实现。该示例也展示了如何调用 largest 函数,把 i32 值的 slice 或 char 值的 slice 传给它。请注意这些代码还不能编译,不过稍后在本章会解决这个问题。

文件名:src/main.rs

fn largest<T>(list: &[T]) -> &T {
    let mut largest = &list[0];

    for item in list {
        if item > largest {
            largest = item;
        }
    }

    largest
}

fn main() {
    let number_list = vec![34, 50, 25, 100, 65];

    let result = largest(&number_list);
    println!("The largest number is {}", result);

    let char_list = vec!['y', 'm', 'a', 'q'];

    let result = largest(&char_list);
    println!("The largest char is {}", result);
}

示例 10-5:一个使用泛型参数的 largest 函数定义,尚不能编译

如果现在就编译这个代码,会出现如下错误:

$ cargo run
   Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0369]: binary operation `>` cannot be applied to type `&T`
 --> src/main.rs:5:17
  |
5 |         if item > largest {
  |            ---- ^ ------- &T
  |            |
  |            &T
  |
help: consider restricting type parameter `T`
  |
1 | fn largest<T: std::cmp::PartialOrd>(list: &[T]) -> &T {
  |             ++++++++++++++++++++++

For more information about this error, try `rustc --explain E0369`.
error: could not compile `chapter10` due to previous error

帮助说明中提到了 std::cmp::PartialOrd,这是一个 trait。下一部分会讲到 trait。不过简单来说,这个错误表明 largest 的函数体不能适用于 T 的所有可能的类型。因为在函数体需要比较 T 类型的值,不过它只能用于我们知道如何排序的类型。为了开启比较功能,标准库中定义的 std::cmp::PartialOrd trait 可以实现类型的比较功能(查看附录 C 获取该 trait 的更多信息)。依照帮助说明中的建议,我们限制 T 只对实现了 PartialOrd 的类型有效后代码就可以编译了,因为标准库为 i32char 实现了 PartialOrd

结构体定义中的泛型

同样也可以用 <> 语法来定义结构体,它包含一个或多个泛型参数类型字段。示例 10-6 定义了一个可以存放任何类型的 xy 坐标值的结构体 Point

文件名:src/main.rs

struct Point<T> {
    x: T,
    y: T,
}

fn main() {
    let integer = Point { x: 5, y: 10 };
    let float = Point { x: 1.0, y: 4.0 };
}

示例 10-6:Point 结构体存放了两个 T 类型的值 xy

其语法类似于函数定义中使用泛型。首先,必须在结构体名称后面的尖括号中声明泛型参数的名称。接着在结构体定义中可以指定具体数据类型的位置使用泛型类型。

注意 Point<T> 的定义中只使用了一个泛型类型,这个定义表明结构体 Point<T> 对于一些类型 T 是泛型的,而且字段 xy 都是 相同类型的,无论它具体是何类型。如果尝试创建一个有不同类型值的 Point<T> 的实例,像示例 10-7 中的代码就不能编译:

文件名:src/main.rs

struct Point<T> {
    x: T,
    y: T,
}

fn main() {
    let wont_work = Point { x: 5, y: 4.0 };
}

示例 10-7:字段 xy 的类型必须相同,因为它们都有相同的泛型类型 T

在这个例子中,当把整型值 5 赋值给 x 时,就告诉了编译器这个 Point<T> 实例中的泛型 T 全是整型。接着指定 y 为浮点值 4.0,因为它y被定义为与 x 相同类型,所以将会得到一个像这样的类型不匹配错误:

$ cargo run
   Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0308]: mismatched types
 --> src/main.rs:7:38
  |
7 |     let wont_work = Point { x: 5, y: 4.0 };
  |                                      ^^^ expected integer, found floating-point number

For more information about this error, try `rustc --explain E0308`.
error: could not compile `chapter10` due to previous error

如果想要定义一个 xy 可以有不同类型且仍然是泛型的 Point 结构体,我们可以使用多个泛型类型参数。在示例 10-8 中,我们修改 Point 的定义为拥有两个泛型类型 TU。其中字段 xT 类型的,而字段 yU 类型的:

文件名:src/main.rs

struct Point<T, U> {
    x: T,
    y: U,
}

fn main() {
    let both_integer = Point { x: 5, y: 10 };
    let both_float = Point { x: 1.0, y: 4.0 };
    let integer_and_float = Point { x: 5, y: 4.0 };
}

示例 10-8:使用两个泛型的 Point,这样 xy 可能是不同类型

现在所有这些 Point 实例都合法了!你可以在定义中使用任意多的泛型类型参数,不过太多的话,代码将难以阅读和理解。当你发现代码中需要很多泛型时,这可能表明你的代码需要重构分解成更小的结构。

枚举定义中的泛型

和结构体类似,枚举也可以在成员中存放泛型数据类型。第六章我们曾用过标准库提供的 Option<T> 枚举,这里再回顾一下:

#![allow(unused)]
fn main() {
enum Option<T> {
    Some(T),
    None,
}
}

现在这个定义应该更容易理解了。如你所见 Option<T> 是一个拥有泛型 T 的枚举,它有两个成员:Some,它存放了一个类型 T 的值,和不存在任何值的None。通过 Option<T> 枚举可以表达有一个可能的值的抽象概念,同时因为 Option<T> 是泛型的,无论这个可能的值是什么类型都可以使用这个抽象。

枚举也可以拥有多个泛型类型。第九章使用过的 Result 枚举定义就是一个这样的例子:

#![allow(unused)]
fn main() {
enum Result<T, E> {
    Ok(T),
    Err(E),
}
}

Result 枚举有两个泛型类型,TEResult 有两个成员:Ok,它存放一个类型 T 的值,而 Err 则存放一个类型 E 的值。这个定义使得 Result 枚举能很方便的表达任何可能成功(返回 T 类型的值)也可能失败(返回 E 类型的值)的操作。实际上,这就是我们在示例 9-3 用来打开文件的方式:当成功打开文件的时候,T 对应的是 std::fs::File 类型;而当打开文件出现问题时,E 的值则是 std::io::Error 类型。

当你意识到代码中定义了多个结构体或枚举,它们不一样的地方只是其中的值的类型的时候,不妨通过泛型类型来避免重复。

方法定义中的泛型

在为结构体和枚举实现方法时(像第五章那样),一样也可以用泛型。示例 10-9 中展示了示例 10-6 中定义的结构体 Point<T>,和在其上实现的名为 x 的方法。

文件名:src/main.rs

struct Point<T> {
    x: T,
    y: T,
}

impl<T> Point<T> {
    fn x(&self) -> &T {
        &self.x
    }
}

fn main() {
    let p = Point { x: 5, y: 10 };

    println!("p.x = {}", p.x());
}

示例 10-9:在 Point<T> 结构体上实现方法 x,它返回 T 类型的字段 x 的引用

这里在 Point<T> 上定义了一个叫做 x 的方法来返回字段 x 中数据的引用:

注意必须在 impl 后面声明 T,这样就可以在 Point<T> 上实现的方法中使用 T 了。通过在 impl 之后声明泛型 T,Rust 就知道 Point 的尖括号中的类型是泛型而不是具体类型。我们可以为泛型参数选择一个与结构体定义中声明的泛型参数所不同的名称,不过依照惯例使用了相同的名称。在声明泛型类型参数的 impl 中编写的方法将会定义在该类型的任何实例上,无论最终替换泛型类型参数的是何具体类型。(译者注:以示例 10-9 为例,impl 中声明了泛型类型参数 Tx 是编写在 impl 中的方法,x 方法将会定义在 Point<T> 的任何实例上,无论最终替换泛型类型参数 T 的是何具体类型)。

定义方法时也可以为泛型指定限制(constraint)。例如,可以选择为 Point<f32> 实例实现方法,而不是为泛型 Point 实例。示例 10-10 展示了一个没有在 impl 之后(的尖括号)声明泛型的例子,这里使用了一个具体类型,f32

文件名:src/main.rs

struct Point<T> {
    x: T,
    y: T,
}

impl<T> Point<T> {
    fn x(&self) -> &T {
        &self.x
    }
}

impl Point<f32> {
    fn distance_from_origin(&self) -> f32 {
        (self.x.powi(2) + self.y.powi(2)).sqrt()
    }
}

fn main() {
    let p = Point { x: 5, y: 10 };

    println!("p.x = {}", p.x());
}

示例 10-10:构建一个只用于拥有泛型参数 T 的结构体的具体类型的 impl

这段代码意味着 Point<f32> 类型会有一个方法 distance_from_origin,而其他 T 不是 f32 类型的 Point<T> 实例则没有定义此方法。这个方法计算点实例与坐标 (0.0, 0.0) 之间的距离,并使用了只能用于浮点型的数学运算符。

结构体定义中的泛型类型参数并不总是与结构体方法签名中使用的泛型是同一类型。示例 10-11 中为 Point 结构体使用了泛型类型 X1Y1,为 mixup 方法签名使用了 X2Y2 来使得示例更加清楚。这个方法用 selfPoint 类型的 x 值(类型 X1)和参数的 Point 类型的 y 值(类型 Y2)来创建一个新 Point 类型的实例:

文件名:src/main.rs

struct Point<X1, Y1> {
    x: X1,
    y: Y1,
}

impl<X1, Y1> Point<X1, Y1> {
    fn mixup<X2, Y2>(self, other: Point<X2, Y2>) -> Point<X1, Y2> {
        Point {
            x: self.x,
            y: other.y,
        }
    }
}

fn main() {
    let p1 = Point { x: 5, y: 10.4 };
    let p2 = Point { x: "Hello", y: 'c' };

    let p3 = p1.mixup(p2);

    println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
}

示例 10-11:方法使用了与结构体定义中不同类型的泛型

main 函数中,定义了一个有 i32 类型的 x(其值为 5)和 f64y(其值为 10.4)的 Pointp2 则是一个有着字符串 slice 类型的 x(其值为 "Hello")和 char 类型的 y(其值为c)的 Point。在 p1 上以 p2 作为参数调用 mixup 会返回一个 p3,它会有一个 i32 类型的 x,因为 x 来自 p1,并拥有一个 char 类型的 y,因为 y 来自 p2println! 会打印出 p3.x = 5, p3.y = c

这个例子的目的是展示一些泛型通过 impl 声明而另一些通过方法定义声明的情况。这里泛型参数 X1Y1 声明于 impl 之后,因为它们与结构体定义相对应。而泛型参数 X2Y2 声明于 fn mixup 之后,因为它们只是相对于方法本身的。

泛型代码的性能

在阅读本部分内容的同时,你可能会好奇使用泛型类型参数是否会有运行时消耗。好消息是泛型并不会使程序比具体类型运行得慢。

Rust 通过在编译时进行泛型代码的 单态化monomorphization)来保证效率。单态化是一个通过填充编译时使用的具体类型,将通用代码转换为特定代码的过程。

在这个过程中,编译器所做的工作正好与示例 10-5 中我们创建泛型函数的步骤相反。编译器寻找所有泛型代码被调用的位置并使用泛型代码针对具体类型生成代码。

让我们看看这如何用于标准库中的 Option 枚举:

#![allow(unused)]
fn main() {
let integer = Some(5);
let float = Some(5.0);
}

当 Rust 编译这些代码的时候,它会进行单态化。编译器会读取传递给 Option<T> 的值并发现有两种 Option<T>:一个对应 i32 另一个对应 f64。为此,它会将泛型定义 Option<T> 展开为两个针对 i32f64 的定义,接着将泛型定义替换为这两个具体的定义。

编译器生成的单态化版本的代码看起来像这样(编译器会使用不同于如下假想的名字):

文件名:src/main.rs

enum Option_i32 {
    Some(i32),
    None,
}

enum Option_f64 {
    Some(f64),
    None,
}

fn main() {
    let integer = Option_i32::Some(5);
    let float = Option_f64::Some(5.0);
}

泛型 Option<T> 被编译器替换为了具体的定义。因为 Rust 会将每种情况下的泛型代码编译为具体类型,使用泛型没有运行时开销。当代码运行时,它的执行效率就跟好像手写每个具体定义的重复代码一样。这个单态化过程正是 Rust 泛型在运行时极其高效的原因。

Trait:定义共同行为

ch10-02-traits.md
commit 92bfbfacf88ee9a814cea0a58e9c019c529ef4ae

trait 定义了某个特定类型拥有可能与其他类型共享的功能。可以通过 trait 以一种抽象的方式定义共同行为。可以使用 trait bounds 指定泛型是任何拥有特定行为的类型。

注意:trait 类似于其他语言中的常被称为 接口interfaces)的功能,虽然有一些不同。

定义 trait

一个类型的行为由其可供调用的方法构成。如果可以对不同类型调用相同的方法的话,这些类型就可以共享相同的行为了。trait 定义是一种将方法签名组合起来的方法,目的是定义一个实现某些目的所必需的行为的集合。

例如,这里有多个存放了不同类型和属性文本的结构体:结构体 NewsArticle 用于存放发生于世界各地的新闻故事,而结构体 Tweet 最多只能存放 280 个字符的内容,以及像是否转推或是否是对推友的回复这样的元数据。

我们想要创建一个名为 aggregator 的多媒体聚合库用来显示可能储存在 NewsArticleTweet 实例中的数据摘要。为了实现功能,每个结构体都要能够获取摘要,这样的话就可以调用实例的 summarize 方法来请求摘要。示例 10-12 中展示了一个表现这个概念的公有 Summary trait 的定义:

文件名:src/lib.rs

pub trait Summary {
    fn summarize(&self) -> String;
}

示例 10-12:Summary trait 定义,它包含由 summarize 方法提供的行为

这里使用 trait 关键字来声明一个 trait,后面是 trait 的名字,在这个例子中是 Summary。我们也声明 traitpub 以便依赖这个 crate 的 crate 也可以使用这个 trait,正如我们见过的一些示例一样。在大括号中声明描述实现这个 trait 的类型所需要的行为的方法签名,在这个例子中是 fn summarize(&self) -> String

在方法签名后跟分号,而不是在大括号中提供其实现。接着每一个实现这个 trait 的类型都需要提供其自定义行为的方法体,编译器也会确保任何实现 Summary trait 的类型都拥有与这个签名的定义完全一致的 summarize 方法。

trait 体中可以有多个方法:一行一个方法签名且都以分号结尾。

为类型实现 trait

现在我们定义了 Summary trait 的签名,接着就可以在多媒体聚合库中实现这个类型了。示例 10-13 中展示了 NewsArticle 结构体上 Summary trait 的一个实现,它使用标题、作者和创建的位置作为 summarize 的返回值。对于 Tweet 结构体,我们选择将 summarize 定义为用户名后跟推文的全部文本作为返回值,并假设推文内容已经被限制为 280 字符以内。

文件名:src/lib.rs

pub trait Summary {
    fn summarize(&self) -> String;
}

pub struct NewsArticle {
    pub headline: String,
    pub location: String,
    pub author: String,
    pub content: String,
}

impl Summary for NewsArticle {
    fn summarize(&self) -> String {
        format!("{}, by {} ({})", self.headline, self.author, self.location)
    }
}

pub struct Tweet {
    pub username: String,
    pub content: String,
    pub reply: bool,
    pub retweet: bool,
}

impl Summary for Tweet {
    fn summarize(&self) -> String {
        format!("{}: {}", self.username, self.content)
    }
}

示例 10-13:在 NewsArticleTweet 类型上实现 Summary trait

在类型上实现 trait 类似于实现与 trait 无关的方法。区别在于 impl 关键字之后,我们提供需要实现 trait 的名称,接着是 for 和需要实现 trait 的类型的名称。在 impl 块中,使用 trait 定义中的方法签名,不过不再后跟分号,而是需要在大括号中编写函数体来为特定类型实现 trait 方法所拥有的行为。

现在库在 NewsArticleTweet 上实现了Summary trait,crate 的用户可以像调用常规方法一样调用 NewsArticleTweet 实例的 trait 方法了。唯一的区别是 trait 必须和类型一起引入作用域以便使用额外的 trait 方法。这是一个二进制 crate 如何利用 aggregator 库 crate 的例子:

use aggregator::{Summary, Tweet};

fn main() {
    let tweet = Tweet {
        username: String::from("horse_ebooks"),
        content: String::from(
            "of course, as you probably already know, people",
        ),
        reply: false,
        retweet: false,
    };

    println!("1 new tweet: {}", tweet.summarize());
}

这会打印出 1 new tweet: horse_ebooks: of course, as you probably already know, people

其他依赖 aggregator crate 的 crate 也可以将 Summary 引入作用域以便为其自己的类型实现该 trait。需要注意的限制是,只有在 trait 或类型至少有一个属于当前 crate 时,我们才能对类型实现该 trait。例如,可以为 aggregator crate 的自定义类型 Tweet 实现如标准库中的 Display trait,这是因为 Tweet 类型位于 aggregator crate 本地的作用域中。类似地,也可以在 aggregator crate 中为 Vec<T> 实现 Summary,这是因为 Summary trait 位于 aggregator crate 本地作用域中。

但是不能为外部类型实现外部 trait。例如,不能在 aggregator crate 中为 Vec<T> 实现 Display trait。这是因为 DisplayVec<T> 都定义于标准库中,它们并不位于 aggregator crate 本地作用域中。这个限制是被称为 相干性coherence)的程序属性的一部分,或者更具体的说是 孤儿规则orphan rule),其得名于不存在父类型。这条规则确保了其他人编写的代码不会破坏你代码,反之亦然。没有这条规则的话,两个 crate 可以分别对相同类型实现相同的 trait,而 Rust 将无从得知应该使用哪一个实现。

默认实现

有时为 trait 中的某些或全部方法提供默认的行为,而不是在每个类型的每个实现中都定义自己的行为是很有用的。这样当为某个特定类型实现 trait 时,可以选择保留或重载每个方法的默认行为。

示例 10-14 中我们为 Summary trait 的 summarize 方法指定一个默认的字符串值,而不是像示例 10-12 中那样只是定义方法签名:

文件名:src/lib.rs

pub trait Summary {
    fn summarize(&self) -> String {
        String::from("(Read more...)")
    }
}

pub struct NewsArticle {
    pub headline: String,
    pub location: String,
    pub author: String,
    pub content: String,
}

impl Summary for NewsArticle {}

pub struct Tweet {
    pub username: String,
    pub content: String,
    pub reply: bool,
    pub retweet: bool,
}

impl Summary for Tweet {
    fn summarize(&self) -> String {
        format!("{}: {}", self.username, self.content)
    }
}

示例 10-14:Summary trait 的定义,带有一个 summarize 方法的默认实现

如果想要对 NewsArticle 实例使用这个默认实现,可以通过 impl Summary for NewsArticle {} 指定一个空的 impl 块。

虽然我们不再直接为 NewsArticle 定义 summarize 方法了,但是我们提供了一个默认实现并且指定 NewsArticle 实现 Summary trait。因此,我们仍然可以对 NewsArticle 实例调用 summarize 方法,如下所示:

use aggregator::{self, NewsArticle, Summary};

fn main() {
    let article = NewsArticle {
        headline: String::from("Penguins win the Stanley Cup Championship!"),
        location: String::from("Pittsburgh, PA, USA"),
        author: String::from("Iceburgh"),
        content: String::from(
            "The Pittsburgh Penguins once again are the best \
             hockey team in the NHL.",
        ),
    };

    println!("New article available! {}", article.summarize());
}

这段代码会打印 New article available! (Read more...)

summarize 创建默认实现并不要求对示例 10-13 中 Tweet 上的 Summary 实现做任何改变。其原因是重载一个默认实现的语法与实现没有默认实现的 trait 方法的语法一样。

默认实现允许调用相同 trait 中的其他方法,哪怕这些方法没有默认实现。如此,trait 可以提供很多有用的功能而只需要实现指定一小部分内容。例如,我们可以定义 Summary trait,使其具有一个需要实现的 summarize_author 方法,然后定义一个 summarize 方法,此方法的默认实现调用 summarize_author 方法:

pub trait Summary {
    fn summarize_author(&self) -> String;

    fn summarize(&self) -> String {
        format!("(Read more from {}...)", self.summarize_author())
    }
}

pub struct Tweet {
    pub username: String,
    pub content: String,
    pub reply: bool,
    pub retweet: bool,
}

impl Summary for Tweet {
    fn summarize_author(&self) -> String {
        format!("@{}", self.username)
    }
}

为了使用这个版本的 Summary,只需在实现 trait 时定义 summarize_author 即可:

pub trait Summary {
    fn summarize_author(&self) -> String;

    fn summarize(&self) -> String {
        format!("(Read more from {}...)", self.summarize_author())
    }
}

pub struct Tweet {
    pub username: String,
    pub content: String,
    pub reply: bool,
    pub retweet: bool,
}

impl Summary for Tweet {
    fn summarize_author(&self) -> String {
        format!("@{}", self.username)
    }
}

一旦定义了 summarize_author,我们就可以对 Tweet 结构体的实例调用 summarize 了,而 summarize 的默认实现会调用我们提供的 summarize_author 定义。因为实现了 summarize_authorSummary trait 就提供了 summarize 方法的功能,且无需编写更多的代码。

use aggregator::{self, Summary, Tweet};

fn main() {
    let tweet = Tweet {
        username: String::from("horse_ebooks"),
        content: String::from(
            "of course, as you probably already know, people",
        ),
        reply: false,
        retweet: false,
    };

    println!("1 new tweet: {}", tweet.summarize());
}

这会打印出 1 new tweet: (Read more from @horse_ebooks...)

注意无法从相同方法的重载实现中调用默认方法。

trait 作为参数

知道了如何定义 trait 和在类型上实现这些 trait 之后,我们可以探索一下如何使用 trait 来接受多种不同类型的参数。示例 10-13 中为 NewsArticleTweet 类型实现了 Summary trait,用其来定义了一个函数 notify 来调用其参数 item 上的 summarize 方法,该参数是实现了 Summary trait 的某种类型。为此可以使用 impl Trait 语法,像这样:

pub trait Summary {
    fn summarize(&self) -> String;
}

pub struct NewsArticle {
    pub headline: String,
    pub location: String,
    pub author: String,
    pub content: String,
}

impl Summary for NewsArticle {
    fn summarize(&self) -> String {
        format!("{}, by {} ({})", self.headline, self.author, self.location)
    }
}

pub struct Tweet {
    pub username: String,
    pub content: String,
    pub reply: bool,
    pub retweet: bool,
}

impl Summary for Tweet {
    fn summarize(&self) -> String {
        format!("{}: {}", self.username, self.content)
    }
}

pub fn notify(item: &impl Summary) {
    println!("Breaking news! {}", item.summarize());
}

对于 item 参数,我们指定了 impl 关键字和 trait 名称,而不是具体的类型。该参数支持任何实现了指定 trait 的类型。在 notify 函数体中,可以调用任何来自 Summary trait 的方法,比如 summarize。我们可以传递任何 NewsArticleTweet 的实例来调用 notify。任何用其它如 Stringi32 的类型调用该函数的代码都不能编译,因为它们没有实现 Summary

Trait Bound 语法

impl Trait 语法适用于直观的例子,它实际上是一种较长形式语法的语法糖。我们称为 trait bound,它看起来像:

pub fn notify<T: Summary>(item: &T) {
    println!("Breaking news! {}", item.summarize());
}

这与之前的例子相同,不过稍微冗长了一些。trait bound 与泛型参数声明在一起,位于尖括号中的冒号后面。

impl Trait 很方便,适用于短小的例子。更长的 trait bound 则适用于更复杂的场景。例如,可以获取两个实现了 Summary 的参数。使用 impl Trait 的语法看起来像这样:

pub fn notify(item1: &impl Summary, item2: &impl Summary) {

这适用于 item1item2 允许是不同类型的情况(只要它们都实现了 Summary)。不过如果你希望强制它们都是相同类型呢?这只有在使用 trait bound 时才有可能:

pub fn notify<T: Summary>(item1: &T, item2: &T) {

泛型 T 被指定为 item1item2 的参数限制,如此传递给参数 item1item2 值的具体类型必须一致。

通过 + 指定多个 trait bound

如果 notify 需要显示 item 的格式化形式,同时也要使用 summarize 方法,那么 item 就需要同时实现两个不同的 trait:DisplaySummary。这可以通过 + 语法实现:

pub fn notify(item: &(impl Summary + Display)) {

+ 语法也适用于泛型的 trait bound:

pub fn notify<T: Summary + Display>(item: &T) {

通过指定这两个 trait bound,notify 的函数体可以调用 summarize 并使用 {} 来格式化 item

通过 where 简化 trait bound

然而,使用过多的 trait bound 也有缺点。每个泛型有其自己的 trait bound,所以有多个泛型参数的函数在名称和参数列表之间会有很长的 trait bound 信息,这使得函数签名难以阅读。为此,Rust 有另一个在函数签名之后的 where 从句中指定 trait bound 的语法。所以除了这么写:

fn some_function<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) -> i32 {

还可以像这样使用 where 从句:

fn some_function<T, U>(t: &T, u: &U) -> i32
where
    T: Display + Clone,
    U: Clone + Debug,
{
    unimplemented!()
}

这个函数签名就显得不那么杂乱,函数名、参数列表和返回值类型都离得很近,看起来跟没有那么多 trait bounds 的函数很像。

返回实现了 trait 的类型

也可以在返回值中使用 impl Trait 语法,来返回实现了某个 trait 的类型:

pub trait Summary {
    fn summarize(&self) -> String;
}

pub struct NewsArticle {
    pub headline: String,
    pub location: String,
    pub author: String,
    pub content: String,
}

impl Summary for NewsArticle {
    fn summarize(&self) -> String {
        format!("{}, by {} ({})", self.headline, self.author, self.location)
    }
}

pub struct Tweet {
    pub username: String,
    pub content: String,
    pub reply: bool,
    pub retweet: bool,
}

impl Summary for Tweet {
    fn summarize(&self) -> String {
        format!("{}: {}", self.username, self.content)
    }
}

fn returns_summarizable() -> impl Summary {
    Tweet {
        username: String::from("horse_ebooks"),
        content: String::from(
            "of course, as you probably already know, people",
        ),
        reply: false,
        retweet: false,
    }
}

通过使用 impl Summary 作为返回值类型,我们指定了 returns_summarizable 函数返回某个实现了 Summary trait 的类型,但是不确定其具体的类型。在这个例子中 returns_summarizable 返回了一个 Tweet,不过调用方并不知情。

返回一个只是指定了需要实现的 trait 的类型的能力在闭包和迭代器场景十分的有用,第十三章会介绍它们。闭包和迭代器创建只有编译器知道的类型,或者是非常非常长的类型。impl Trait 允许你简单的指定函数返回一个 Iterator 而无需写出实际的冗长的类型。

不过这只适用于返回单一类型的情况。例如,这段代码的返回值类型指定为返回 impl Summary,但是返回了 NewsArticleTweet 就行不通:

pub trait Summary {
    fn summarize(&self) -> String;
}

pub struct NewsArticle {
    pub headline: String,
    pub location: String,
    pub author: String,
    pub content: String,
}

impl Summary for NewsArticle {
    fn summarize(&self) -> String {
        format!("{}, by {} ({})", self.headline, self.author, self.location)
    }
}

pub struct Tweet {
    pub username: String,
    pub content: String,
    pub reply: bool,
    pub retweet: bool,
}

impl Summary for Tweet {
    fn summarize(&self) -> String {
        format!("{}: {}", self.username, self.content)
    }
}

fn returns_summarizable(switch: bool) -> impl Summary {
    if switch {
        NewsArticle {
            headline: String::from(
                "Penguins win the Stanley Cup Championship!",
            ),
            location: String::from("Pittsburgh, PA, USA"),
            author: String::from("Iceburgh"),
            content: String::from(
                "The Pittsburgh Penguins once again are the best \
                 hockey team in the NHL.",
            ),
        }
    } else {
        Tweet {
            username: String::from("horse_ebooks"),
            content: String::from(
                "of course, as you probably already know, people",
            ),
            reply: false,
            retweet: false,
        }
    }
}

这里尝试返回 NewsArticleTweet。这不能编译,因为 impl Trait 工作方式的限制。第十七章的 顾及不同类型值的 trait 对象” 部分会介绍如何编写这样一个函数。

使用 trait bound 有条件地实现方法

通过使用带有 trait bound 的泛型参数的 impl 块,可以有条件地只为那些实现了特定 trait 的类型实现方法。例如,示例 10-15 中的类型 Pair<T> 总是实现了 new 方法并返回一个 Pair<T> 的实例(回忆一下第五章的 "定义方法" 部分,Self 是一个 impl 块类型的类型别名(type alias),在这里是 Pair<T>)。不过在下一个 impl 块中,只有那些为 T 类型实现了 PartialOrd trait(来允许比较) Display trait(来启用打印)的 Pair<T> 才会实现 cmp_display 方法:

use std::fmt::Display;

struct Pair<T> {
    x: T,
    y: T,
}

impl<T> Pair<T> {
    fn new(x: T, y: T) -> Self {
        Self { x, y }
    }
}

impl<T: Display + PartialOrd> Pair<T> {
    fn cmp_display(&self) {
        if self.x >= self.y {
            println!("The largest member is x = {}", self.x);
        } else {
            println!("The largest member is y = {}", self.y);
        }
    }
}

示例 10-15:根据 trait bound 在泛型上有条件的实现方法

也可以对任何实现了特定 trait 的类型有条件地实现 trait。对任何满足特定 trait bound 的类型实现 trait 被称为 blanket implementations,它们被广泛的用于 Rust 标准库中。例如,标准库为任何实现了 Display trait 的类型实现了 ToString trait。这个 impl 块看起来像这样:

impl<T: Display> ToString for T {
    // --snip--
}

因为标准库有了这些 blanket implementation,我们可以对任何实现了 Display trait 的类型调用由 ToString 定义的 to_string 方法。例如,可以将整型转换为对应的 String 值,因为整型实现了 Display

#![allow(unused)]
fn main() {
let s = 3.to_string();
}

blanket implementation 会出现在 trait 文档的 “Implementers” 部分。

trait 和 trait bound 让我们能够使用泛型类型参数来减少重复,而且能够向编译器明确指定泛型类型需要拥有哪些行为。然后编译器可以利用 trait bound 信息检查代码中所用到的具体类型是否提供了正确的行为。在动态类型语言中,如果我们调用了一个未定义的方法,会在运行时出现错误。Rust 将这些错误移动到了编译时,甚至在代码能够运行之前就强迫我们修复问题。另外,我们也无需编写运行时检查行为的代码,因为在编译时就已经检查过了。这样既提升了性能又不必放弃泛型的灵活性。

生命周期确保引用有效

ch10-03-lifetime-syntax.md
commit 5f67eee42345ba44f6f08a22c2192165f4b0e930

生命周期是另一类我们已经使用过的泛型。不同于确保类型有期望的行为,生命周期确保引用如预期一直有效。

当在第四章讨论 “引用和借用” 部分时,我们遗漏了一个重要的细节:Rust 中的每一个引用都有其 生命周期lifetime),也就是引用保持有效的作用域。大部分时候生命周期是隐含并可以推断的,正如大部分时候类型也是可以推断的一样。类似于当因为有多种可能类型的时候必须注明类型,也会出现引用的生命周期以一些不同方式相关联的情况,所以 Rust 需要我们使用泛型生命周期参数来注明它们的关系,这样就能确保运行时实际使用的引用绝对是有效的。

生命周期注解甚至不是一个大部分语言都有的概念,所以这可能感觉起来有些陌生。虽然本章不可能涉及到它全部的内容,我们会讲到一些通常你可能会遇到的生命周期语法以便你熟悉这个概念。

生命周期避免了悬垂引用

生命周期的主要目标是避免悬垂引用dangling references),后者会导致程序引用了非预期引用的数据。考虑一下示例 10-16 中的程序,它有一个外部作用域和一个内部作用域。

fn main() {
    let r;

    {
        let x = 5;
        r = &x;
    }

    println!("r: {}", r);
}

示例 10-16:尝试使用离开作用域的值的引用

注意:示例 10-16、10-17 和 10-23 中声明了没有初始值的变量,所以这些变量存在于外部作用域。这乍看之下好像和 Rust 不允许存在空值相冲突。然而如果尝试在给它一个值之前使用这个变量,会出现一个编译时错误,这就说明了 Rust 确实不允许空值。

外部作用域声明了一个没有初值的变量 r,而内部作用域声明了一个初值为 5 的变量x。在内部作用域中,我们尝试将 r 的值设置为一个 x 的引用。接着在内部作用域结束后,尝试打印出 r 的值。这段代码不能编译因为 r 引用的值在尝试使用之前就离开了作用域。如下是错误信息:

$ cargo run
   Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0597]: `x` does not live long enough
 --> src/main.rs:6:13
  |
6 |         r = &x;
  |             ^^ borrowed value does not live long enough
7 |     }
  |     - `x` dropped here while still borrowed
8 |
9 |     println!("r: {}", r);
  |                       - borrow later used here

For more information about this error, try `rustc --explain E0597`.
error: could not compile `chapter10` due to previous error

变量 x 并没有 “存在的足够久”。其原因是 x 在到达第 7 行内部作用域结束时就离开了作用域。不过 r 在外部作用域仍是有效的;作用域越大我们就说它 “存在的越久”。如果 Rust 允许这段代码工作,r 将会引用在 x 离开作用域时被释放的内存,这时尝试对 r 做任何操作都不能正常工作。那么 Rust 是如何决定这段代码是不被允许的呢?这得益于借用检查器。

借用检查器

Rust 编译器有一个 借用检查器borrow checker),它比较作用域来确保所有的借用都是有效的。示例 10-17 展示了与示例 10-16 相同的例子不过带有变量生命周期的注释:

fn main() {
    let r;                // ---------+-- 'a
                          //          |
    {                     //          |
        let x = 5;        // -+-- 'b  |
        r = &x;           //  |       |
    }                     // -+       |
                          //          |
    println!("r: {}", r); //          |
}                         // ---------+

示例 10-17:rx 的生命周期注解,分别叫做 'a'b

这里将 r 的生命周期标记为 'a 并将 x 的生命周期标记为 'b。如你所见,内部的 'b 块要比外部的生命周期 'a 小得多。在编译时,Rust 比较这两个生命周期的大小,并发现 r 拥有生命周期 'a,不过它引用了一个拥有生命周期 'b 的对象。程序被拒绝编译,因为生命周期 'b 比生命周期 'a 要小:被引用的对象比它的引用者存在的时间更短。

让我们看看示例 10-18 中这个并没有产生悬垂引用且可以正确编译的例子:

fn main() {
    let x = 5;            // ----------+-- 'b
                          //           |
    let r = &x;           // --+-- 'a  |
                          //   |       |
    println!("r: {}", r); //   |       |
                          // --+       |
}                         // ----------+

示例 10-18:一个有效的引用,因为数据比引用有着更长的生命周期

这里 x 拥有生命周期 'b,比 'a 要大。这就意味着 r 可以引用 x:Rust 知道 r 中的引用在 x 有效的时候也总是有效的。

现在我们已经在一个具体的例子中展示了引用的生命周期位于何处,并讨论了 Rust 如何分析生命周期来保证引用总是有效的,接下来让我们聊聊在函数的上下文中参数和返回值的泛型生命周期。

函数中的泛型生命周期

让我们来编写一个返回两个字符串 slice 中较长者的函数。这个函数获取两个字符串 slice 并返回一个字符串 slice。一旦我们实现了 longest 函数,示例 10-19 中的代码应该会打印出 The longest string is abcd

文件名:src/main.rs

fn main() {
    let string1 = String::from("abcd");
    let string2 = "xyz";

    let result = longest(string1.as_str(), string2);
    println!("The longest string is {}", result);
}

示例 10-19:main 函数调用 longest 函数来寻找两个字符串 slice 中较长的一个

注意这个函数获取作为引用的字符串 slice,而不是字符串,因为我们不希望 longest 函数获取参数的所有权。参考之前第四章中的 “字符串 slice 作为参数” 部分中更多关于为什么示例 10-19 的参数正符合我们期望的讨论。

如果尝试像示例 10-20 中那样实现 longest 函数,它并不能编译:

文件名:src/main.rs

fn main() {
    let string1 = String::from("abcd");
    let string2 = "xyz";

    let result = longest(string1.as_str(), string2);
    println!("The longest string is {}", result);
}

fn longest(x: &str, y: &str) -> &str {
    if x.len() > y.len() {
        x
    } else {
        y
    }
}

示例 10-20:一个 longest 函数的实现,它返回两个字符串 slice 中较长者,现在还不能编译

相应地会出现如下有关生命周期的错误:

$ cargo run
   Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0106]: missing lifetime specifier
 --> src/main.rs:9:33
  |
9 | fn longest(x: &str, y: &str) -> &str {
  |               ----     ----     ^ expected named lifetime parameter
  |
  = help: this function's return type contains a borrowed value, but the signature does not say whether it is borrowed from `x` or `y`
help: consider introducing a named lifetime parameter
  |
9 | fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
  |           ++++     ++          ++          ++

For more information about this error, try `rustc --explain E0106`.
error: could not compile `chapter10` due to previous error

提示文本揭示了返回值需要一个泛型生命周期参数,因为 Rust 并不知道将要返回的引用是指向 xy。事实上我们也不知道,因为函数体中 if 块返回一个 x 的引用而 else 块返回一个 y 的引用!

当我们定义这个函数的时候,并不知道传递给函数的具体值,所以也不知道到底是 if 还是 else 会被执行。我们也不知道传入的引用的具体生命周期,所以也就不能像示例 10-17 和 10-18 那样通过观察作用域来确定返回的引用是否总是有效。借用检查器自身同样也无法确定,因为它不知道 xy 的生命周期是如何与返回值的生命周期相关联的。为了修复这个错误,我们将增加泛型生命周期参数来定义引用间的关系以便借用检查器可以进行分析。

生命周期注解语法

生命周期注解并不改变任何引用的生命周期的长短。相反它们描述了多个引用生命周期相互的关系,而不影响其生命周期。与当函数签名中指定了泛型类型参数后就可以接受任何类型一样,当指定了泛型生命周期后函数也能接受任何生命周期的引用。

生命周期注解有着一个不太常见的语法:生命周期参数名称必须以撇号(')开头,其名称通常全是小写,类似于泛型其名称非常短。大多数人使用 'a 作为第一个生命周期注解。生命周期参数注解位于引用的 & 之后,并有一个空格来将引用类型与生命周期注解分隔开。

这里有一些例子:我们有一个没有生命周期参数的 i32 的引用,一个有叫做 'a 的生命周期参数的 i32 的引用,和一个生命周期也是 'ai32 的可变引用:

&i32        // 引用
&'a i32     // 带有显式生命周期的引用
&'a mut i32 // 带有显式生命周期的可变引用

单个的生命周期注解本身没有多少意义,因为生命周期注解告诉 Rust 多个引用的泛型生命周期参数如何相互联系的。让我们在 longest 函数的上下文中理解生命周期注解如何相互联系。

例如如果函数有一个生命周期 'ai32 的引用的参数 first。还有另一个同样是生命周期 'ai32 的引用的参数 second。这两个生命周期注解意味着引用 firstsecond 必须与这泛型生命周期存在得一样久。

函数签名中的生命周期注解

为了在函数签名中使用生命周期注解,需要在函数名和参数列表间的尖括号中声明泛型生命周期(lifetime)参数,就像泛型类型(type)参数一样。

我们希望函数签名表达如下限制:也就是这两个参数和返回的引用存活的一样久。(两个)参数和返回的引用的生命周期是相关的。就像示例 10-21 中在每个引用中都加上了 'a 那样。

文件名:src/main.rs

fn main() {
    let string1 = String::from("abcd");
    let string2 = "xyz";

    let result = longest(string1.as_str(), string2);
    println!("The longest string is {}", result);
}

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
    if x.len() > y.len() {
        x
    } else {
        y
    }
}

示例 10-21:longest 函数定义指定了签名中所有的引用必须有相同的生命周期 'a

这段代码能够编译并会产生我们希望得到的示例 10-19 中的 main 函数的结果。

现在函数签名表明对于某些生命周期 'a,函数会获取两个参数,它们都是与生命周期 'a 存在的一样长的字符串 slice。函数会返回一个同样也与生命周期 'a 存在的一样长的字符串 slice。它的实际含义是 longest 函数返回的引用的生命周期与函数参数所引用的值的生命周期的较小者一致。这些关系就是我们希望 Rust 分析代码时所使用的。

记住通过在函数签名中指定生命周期参数时,我们并没有改变任何传入值或返回值的生命周期,而是指出任何不满足这个约束条件的值都将被借用检查器拒绝。注意 longest 函数并不需要知道 xy 具体会存在多久,而只需要知道有某个可以被 'a 替代的作用域将会满足这个签名。

当在函数中使用生命周期注解时,这些注解出现在函数签名中,而不存在于函数体中的任何代码中。生命周期注解成为了函数约定的一部分,非常像签名中的类型。让函数签名包含生命周期约定意味着 Rust 编译器的工作变得更简单了。如果函数注解有误或者调用方法不对,编译器错误可以更准确地指出代码和限制的部分。如果不这么做的话,Rust 编译会对我们期望的生命周期关系做更多的推断,这样编译器可能只能指出离出问题地方很多步之外的代码。

当具体的引用被传递给 longest 时,被 'a 所替代的具体生命周期是 x 的作用域与 y 的作用域相重叠的那一部分。换一种说法就是泛型生命周期 'a 的具体生命周期等同于 xy 的生命周期中较小的那一个。因为我们用相同的生命周期参数 'a 标注了返回的引用值,所以返回的引用值就能保证在 xy 中较短的那个生命周期结束之前保持有效。

让我们看看如何通过传递拥有不同具体生命周期的引用来限制 longest 函数的使用。示例 10-22 是一个很直观的例子。

文件名:src/main.rs

fn main() {
    let string1 = String::from("long string is long");

    {
        let string2 = String::from("xyz");
        let result = longest(string1.as_str(), string2.as_str());
        println!("The longest string is {}", result);
    }
}

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
    if x.len() > y.len() {
        x
    } else {
        y
    }
}

示例 10-22:通过拥有不同的具体生命周期的 String 值调用 longest 函数

在这个例子中,string1 直到外部作用域结束都是有效的,string2 则在内部作用域中是有效的,而 result 则引用了一些直到内部作用域结束都是有效的值。借用检查器认可这些代码;它能够编译和运行,并打印出 The longest string is long string is long

接下来,让我们尝试另外一个例子,该例子揭示了 result 的引用的生命周期必须是两个参数中较短的那个。以下代码将 result 变量的声明移动出内部作用域,但是将 resultstring2 变量的赋值语句一同留在内部作用域中。接着,使用了变量 resultprintln! 也被移动到内部作用域之外。注意示例 10-23 中的代码不能通过编译:

文件名:src/main.rs

fn main() {
    let string1 = String::from("long string is long");
    let result;
    {
        let string2 = String::from("xyz");
        result = longest(string1.as_str(), string2.as_str());
    }
    println!("The longest string is {}", result);
}

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
    if x.len() > y.len() {
        x
    } else {
        y
    }
}

示例 10-23:尝试在 string2 离开作用域之后使用 result

如果尝试编译会出现如下错误:

$ cargo run
   Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0597]: `string2` does not live long enough
 --> src/main.rs:6:44
  |
6 |         result = longest(string1.as_str(), string2.as_str());
  |                                            ^^^^^^^^^^^^^^^^ borrowed value does not live long enough
7 |     }
  |     - `string2` dropped here while still borrowed
8 |     println!("The longest string is {}", result);
  |                                          ------ borrow later used here

For more information about this error, try `rustc --explain E0597`.
error: could not compile `chapter10` due to previous error

错误表明为了保证 println! 中的 result 是有效的,string2 需要直到外部作用域结束都是有效的。Rust 知道这些是因为(longest)函数的参数和返回值都使用了相同的生命周期参数 'a

如果从人的角度读上述代码,我们可能会觉得这个代码是正确的。 string1 更长,因此 result 会包含指向 string1 的引用。因为 string1 尚未离开作用域,对于 println! 来说 string1 的引用仍然是有效的。然而,我们通过生命周期参数告诉 Rust 的是: longest 函数返回的引用的生命周期应该与传入参数的生命周期中较短那个保持一致。因此,借用检查器不允许示例 10-23 中的代码,因为它可能会存在无效的引用。

请尝试更多采用不同的值和不同生命周期的引用作为 longest 函数的参数和返回值的实验。并在开始编译前猜想你的实验能否通过借用检查器,接着编译一下看看你的理解是否正确!

深入理解生命周期

指定生命周期参数的正确方式依赖函数实现的具体功能。例如,如果将 longest 函数的实现修改为总是返回第一个参数而不是最长的字符串 slice,就不需要为参数 y 指定一个生命周期。如下代码将能够编译:

文件名:src/main.rs

fn main() {
    let string1 = String::from("abcd");
    let string2 = "efghijklmnopqrstuvwxyz";

    let result = longest(string1.as_str(), string2);
    println!("The longest string is {}", result);
}

fn longest<'a>(x: &'a str, y: &str) -> &'a str {
    x
}

我们为参数 x 和返回值指定了生命周期参数 'a,不过没有为参数 y 指定,因为 y 的生命周期与参数 x 和返回值的生命周期没有任何关系。

当从函数返回一个引用,返回值的生命周期参数需要与一个参数的生命周期参数相匹配。如果返回的引用 没有 指向任何一个参数,那么唯一的可能就是它指向一个函数内部创建的值。然而它将会是一个悬垂引用,因为它将会在函数结束时离开作用域。尝试考虑这个并不能编译的 longest 函数实现:

文件名:src/main.rs

fn main() {
    let string1 = String::from("abcd");
    let string2 = "xyz";

    let result = longest(string1.as_str(), string2);
    println!("The longest string is {}", result);
}

fn longest<'a>(x: &str, y: &str) -> &'a str {
    let result = String::from("really long string");
    result.as_str()
}

即便我们为返回值指定了生命周期参数 'a,这个实现却编译失败了,因为返回值的生命周期与参数完全没有关联。这里是会出现的错误信息:

$ cargo run
   Compiling chapter10 v0.1.0 (file:///projects/chapter10)
error[E0515]: cannot return reference to local variable `result`
  --> src/main.rs:11:5
   |
11 |     result.as_str()
   |     ^^^^^^^^^^^^^^^ returns a reference to data owned by the current function

For more information about this error, try `rustc --explain E0515`.
error: could not compile `chapter10` due to previous error

出现的问题是 resultlongest 函数的结尾将离开作用域并被清理,而我们尝试从函数返回一个 result 的引用。无法指定生命周期参数来改变悬垂引用,而且 Rust 也不允许我们创建一个悬垂引用。在这种情况,最好的解决方案是返回一个有所有权的数据类型而不是一个引用,这样函数调用者就需要负责清理这个值了。

综上,生命周期语法是用于将函数的多个参数与其返回值的生命周期进行关联的。一旦它们形成了某种关联,Rust 就有了足够的信息来允许内存安全的操作并阻止会产生悬垂指针亦或是违反内存安全的行为。

结构体定义中的生命周期注解

目前为止,我们定义的结构体全都包含拥有所有权的类型。也可以定义包含引用的结构体,不过这需要为结构体定义中的每一个引用添加生命周期注解。示例 10-24 中有一个存放了一个字符串 slice 的结构体 ImportantExcerpt

文件名:src/main.rs

struct ImportantExcerpt<'a> {
    part: &'a str,
}

fn main() {
    let novel = String::from("Call me Ishmael. Some years ago...");
    let first_sentence = novel.split('.').next().expect("Could not find a '.'");
    let i = ImportantExcerpt {
        part: first_sentence,
    };
}

示例 10-24:一个存放引用的结构体,所以其定义需要生命周期注解

这个结构体有唯一一个字段 part,它存放了一个字符串 slice,这是一个引用。类似于泛型参数类型,必须在结构体名称后面的尖括号中声明泛型生命周期参数,以便在结构体定义中使用生命周期参数。这个注解意味着 ImportantExcerpt 的实例不能比其 part 字段中的引用存在的更久。

这里的 main 函数创建了一个 ImportantExcerpt 的实例,它存放了变量 novel 所拥有的 String 的第一个句子的引用。novel 的数据在 ImportantExcerpt 实例创建之前就存在。另外,直到 ImportantExcerpt 离开作用域之后 novel 都不会离开作用域,所以 ImportantExcerpt 实例中的引用是有效的。

生命周期省略(Lifetime Elision)

现在我们已经知道了每一个引用都有一个生命周期,而且我们需要为那些使用了引用的函数或结构体指定生命周期。然而,第四章的示例 4-9 中有一个函数,如示例 10-25 所示,它没有生命周期注解却能编译成功:

文件名:src/lib.rs

fn first_word(s: &str) -> &str {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return &s[0..i];
        }
    }

    &s[..]
}

fn main() {
    let my_string = String::from("hello world");

    // first_word works on slices of `String`s
    let word = first_word(&my_string[..]);

    let my_string_literal = "hello world";

    // first_word works on slices of string literals
    let word = first_word(&my_string_literal[..]);

    // Because string literals *are* string slices already,
    // this works too, without the slice syntax!
    let word = first_word(my_string_literal);
}

示例 10-25:示例 4-9 定义了一个没有使用生命周期注解的函数,即便其参数和返回值都是引用

这个函数没有生命周期注解却能编译是由于一些历史原因:在早期版本(pre-1.0)的 Rust 中,这的确是不能编译的。每一个引用都必须有明确的生命周期。那时的函数签名将会写成这样:

fn first_word<'a>(s: &'a str) -> &'a str {

在编写了很多 Rust 代码后,Rust 团队发现在特定情况下 Rust 程序员们总是重复地编写一模一样的生命周期注解。这些场景是可预测的并且遵循几个明确的模式。接着 Rust 团队就把这些模式编码进了 Rust 编译器中,如此借用检查器在这些情况下就能推断出生命周期而不再强制程序员显式的增加注解。

这里我们提到一些 Rust 的历史是因为更多的明确的模式被合并和添加到编译器中是完全可能的。未来只会需要更少的生命周期注解。

被编码进 Rust 引用分析的模式被称为 生命周期省略规则lifetime elision rules)。这并不是需要程序员遵守的规则;这些规则是一系列特定的场景,此时编译器会考虑,如果代码符合这些场景,就无需明确指定生命周期。

省略规则并不提供完整的推断:如果 Rust 在明确遵守这些规则的前提下变量的生命周期仍然是模棱两可的话,它不会猜测剩余引用的生命周期应该是什么。编译器会在可以通过增加生命周期注解来解决错误问题的地方给出一个错误提示,而不是进行推断或猜测。

函数或方法的参数的生命周期被称为 输入生命周期input lifetimes),而返回值的生命周期被称为 输出生命周期output lifetimes)。

编译器采用三条规则来判断引用何时不需要明确的注解。第一条规则适用于输入生命周期,后两条规则适用于输出生命周期。如果编译器检查完这三条规则后仍然存在没有计算出生命周期的引用,编译器将会停止并生成错误。这些规则适用于 fn 定义,以及 impl 块。

第一条规则是编译器为每一个引用参数都分配一个生命周期参数。换句话说就是,函数有一个引用参数的就有一个生命周期参数:fn foo<'a>(x: &'a i32),有两个引用参数的函数就有两个不同的生命周期参数,fn foo<'a, 'b>(x: &'a i32, y: &'b i32),依此类推。

第二条规则是如果只有一个输入生命周期参数,那么它被赋予所有输出生命周期参数:fn foo<'a>(x: &'a i32) -> &'a i32

第三条规则是如果方法有多个输入生命周期参数并且其中一个参数是 &self&mut self,说明是个对象的方法 (method)(译者注:这里涉及 rust 的面向对象参见 17 章),那么所有输出生命周期参数被赋予 self 的生命周期。第三条规则使得方法更容易读写,因为只需更少的符号。

假设我们自己就是编译器。并应用这些规则来计算示例 10-25 中 first_word 函数签名中的引用的生命周期。开始时签名中的引用并没有关联任何生命周期:

fn first_word(s: &str) -> &str {

接着编译器应用第一条规则,也就是每个引用参数都有其自己的生命周期。我们像往常一样称之为 'a,所以现在签名看起来像这样:

fn first_word<'a>(s: &'a str) -> &str {

对于第二条规则,因为这里正好只有一个输入生命周期参数所以是适用的。第二条规则表明输入参数的生命周期将被赋予输出生命周期参数,所以现在签名看起来像这样:

fn first_word<'a>(s: &'a str) -> &'a str {

现在这个函数签名中的所有引用都有了生命周期,如此编译器可以继续它的分析而无须程序员标记这个函数签名中的生命周期。

让我们再看看另一个例子,这次我们从示例 10-20 中没有生命周期参数的 longest 函数开始:

fn longest(x: &str, y: &str) -> &str {

再次假设我们自己就是编译器并应用第一条规则:每个引用参数都有其自己的生命周期。这次有两个参数,所以就有两个(不同的)生命周期:

fn longest<'a, 'b>(x: &'a str, y: &'b str) -> &str {

再来应用第二条规则,因为函数存在多个输入生命周期,它并不适用于这种情况。再来看第三条规则,它同样也不适用,这是因为没有 self 参数。应用了三个规则之后编译器还没有计算出返回值类型的生命周期。这就是在编译示例 10-20 的代码时会出现错误的原因:编译器使用所有已知的生命周期省略规则,仍不能计算出签名中所有引用的生命周期。

因为第三条规则真正能够适用的就只有方法签名,现在就让我们看看那种情况中的生命周期,并看看为什么这条规则意味着我们经常不需要在方法签名中标注生命周期。

方法定义中的生命周期注解

当为带有生命周期的结构体实现方法时,其语法依然类似示例 10-11 中展示的泛型类型参数的语法。我们在哪里声明和使用生命周期参数,取决于它们是与结构体字段相关还是与方法参数和返回值相关。

(实现方法时)结构体字段的生命周期必须总是在 impl 关键字之后声明并在结构体名称之后被使用,因为这些生命周期是结构体类型的一部分。

impl 块里的方法签名中,引用可能与结构体字段中的引用相关联,也可能是独立的。另外,生命周期省略规则也经常让我们无需在方法签名中使用生命周期注解。让我们看看一些使用示例 10-24 中定义的结构体 ImportantExcerpt 的例子。

首先,这里有一个方法 level。其唯一的参数是 self 的引用,而且返回值只是一个 i32,并不引用任何值:

struct ImportantExcerpt<'a> {
    part: &'a str,
}

impl<'a> ImportantExcerpt<'a> {
    fn level(&self) -> i32 {
        3
    }
}

impl<'a> ImportantExcerpt<'a> {
    fn announce_and_return_part(&self, announcement: &str) -> &str {
        println!("Attention please: {}", announcement);
        self.part
    }
}

fn main() {
    let novel = String::from("Call me Ishmael. Some years ago...");
    let first_sentence = novel.split('.').next().expect("Could not find a '.'");
    let i = ImportantExcerpt {
        part: first_sentence,
    };
}

impl 之后和类型名称之后的生命周期参数是必要的,不过因为第一条生命周期规则我们并不必须标注 self 引用的生命周期。

这里是一个适用于第三条生命周期省略规则的例子:

struct ImportantExcerpt<'a> {
    part: &'a str,
}

impl<'a> ImportantExcerpt<'a> {
    fn level(&self) -> i32 {
        3
    }
}

impl<'a> ImportantExcerpt<'a> {
    fn announce_and_return_part(&self, announcement: &str) -> &str {
        println!("Attention please: {}", announcement);
        self.part
    }
}

fn main() {
    let novel = String::from("Call me Ishmael. Some years ago...");
    let first_sentence = novel.split('.').next().expect("Could not find a '.'");
    let i = ImportantExcerpt {
        part: first_sentence,
    };
}

这里有两个输入生命周期,所以 Rust 应用第一条生命周期省略规则并给予 &selfannouncement 它们各自的生命周期。接着,因为其中一个参数是 &self,返回值类型被赋予了 &self 的生命周期,这样所有的生命周期都被计算出来了。

静态生命周期

这里有一种特殊的生命周期值得讨论:'static,其生命周期能够存活于整个程序期间。所有的字符串字面值都拥有 'static 生命周期,我们也可以选择像下面这样标注出来:

#![allow(unused)]
fn main() {
let s: &'static str = "I have a static lifetime.";
}

这个字符串的文本被直接储存在程序的二进制文件中而这个文件总是可用的。因此所有的字符串字面值都是 'static 的。

你可能在错误信息的帮助文本中见过使用 'static 生命周期的建议,不过将引用指定为 'static 之前,思考一下这个引用是否真的在整个程序的生命周期里都有效,以及你是否希望它存在得这么久。大部分情况中,推荐 'static 生命周期的错误信息都是尝试创建一个悬垂引用或者可用的生命周期不匹配的结果。在这种情况下的解决方案是修复这些问题而不是指定一个 'static 的生命周期。

结合泛型类型参数、trait bounds 和生命周期

让我们简要的看一下在同一函数中指定泛型类型参数、trait bounds 和生命周期的语法!

fn main() {
    let string1 = String::from("abcd");
    let string2 = "xyz";

    let result = longest_with_an_announcement(
        string1.as_str(),
        string2,
        "Today is someone's birthday!",
    );
    println!("The longest string is {}", result);
}

use std::fmt::Display;

fn longest_with_an_announcement<'a, T>(
    x: &'a str,
    y: &'a str,
    ann: T,
) -> &'a str
where
    T: Display,
{
    println!("Announcement! {}", ann);
    if x.len() > y.len() {
        x
    } else {
        y
    }
}

这个是示例 10-21 中那个返回两个字符串 slice 中较长者的 longest 函数,不过带有一个额外的参数 annann 的类型是泛型 T,它可以被放入任何实现了 where 从句中指定的 Display trait 的类型。这个额外的参数会使用 {} 打印,这也就是为什么 Display trait bound 是必须的。因为生命周期也是泛型,所以生命周期参数 'a 和泛型类型参数 T 都位于函数名后的同一尖括号列表中。

总结

这一章介绍了很多的内容!现在你知道了泛型类型参数、trait 和 trait bounds 以及泛型生命周期类型,你已经准备好编写既不重复又能适用于多种场景的代码了。泛型类型参数意味着代码可以适用于不同的类型。trait 和 trait bounds 保证了即使类型是泛型的,这些类型也会拥有所需要的行为。由生命周期注解所指定的引用生命周期之间的关系保证了这些灵活多变的代码不会出现悬垂引用。而所有的这一切发生在编译时所以不会影响运行时效率!

你可能不会相信,这个话题还有更多需要学习的内容:第十七章会讨论 trait 对象,这是另一种使用 trait 的方式。还有更多更复杂的涉及生命周期注解的场景,只有在非常高级的情况下才会需要它们;对于这些内容,请阅读 Rust Reference。不过接下来,让我们聊聊如何在 Rust 中编写测试,来确保代码的所有功能能像我们希望的那样工作!

编写自动化测试

ch11-00-testing.md
commit 765318b844569a642ceef7bf1adab9639cbf6af3

Edsger W. Dijkstra 在其 1972 年的文章【谦卑的程序员】(“The Humble Programmer”)中说到 “软件测试是证明 bug 存在的有效方法,而证明其不存在时则显得令人绝望的不足。”(“Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence.”)这并不意味着我们不该尽可能地测试软件!

程序的正确性意味着代码如我们期望的那样运行。Rust 是一个相当注重正确性的编程语言,不过正确性是一个难以证明的复杂主题。Rust 的类型系统在此问题上下了很大的功夫,不过类型系统不可能捕获所有问题。为此,Rust 包含了编写自动化软件测试的功能支持。

假设我们可以编写一个叫做 add_two 的将传递给它的值加二的函数。它的签名有一个整型参数并返回一个整型值。当实现和编译这个函数时,Rust 会进行所有目前我们已经见过的类型检查和借用检查,例如,这些检查会确保我们不会传递 String 或无效的引用给这个函数。Rust 所 不能 检查的是这个函数是否会准确的完成我们期望的工作:返回参数加二后的值,而不是比如说参数加 10 或减 50 的值!这也就是测试出场的地方。

我们可以编写测试断言,比如说,当传递 3add_two 函数时,返回值是 5。无论何时对代码进行修改,都可以运行测试来确保任何现存的正确行为没有被改变。

测试是一项复杂的技能:虽然不能在一个章节的篇幅中介绍如何编写好的测试的每个细节,但我们还是会讨论 Rust 测试功能的机制。我们会讲到编写测试时会用到的注解和宏,运行测试的默认行为和选项,以及如何将测试组织成单元测试和集成测试。

如何编写测试

ch11-01-writing-tests.md
commit 6e2fe7c0f085989cc498cec139e717e2af172cb7

Rust 中的测试函数是用来验证非测试代码是否是按照期望的方式运行的。测试函数体通常执行如下三种操作:

  1. 设置任何所需的数据或状态
  2. 运行需要测试的代码
  3. 断言其结果是我们所期望的

让我们看看 Rust 提供的专门用来编写测试的功能:test 属性、一些宏和 should_panic 属性。

测试函数剖析

作为最简单例子,Rust 中的测试就是一个带有 test 属性注解的函数。属性(attribute)是关于 Rust 代码片段的元数据;第五章中结构体中用到的 derive 属性就是一个例子。为了将一个函数变成测试函数,需要在 fn 行之前加上 #[test]。当使用 cargo test 命令运行测试时,Rust 会构建一个测试执行程序用来调用被标注的函数,并报告每一个测试是通过还是失败。

每次使用 Cargo 新建一个库项目时,它会自动为我们生成一个测试模块和一个测试函数。这个模块提供了一个编写测试的模板,为此每次开始新项目时不必去查找测试函数的具体结构和语法了。因为这样当然你也可以额外增加任意多的测试函数以及测试模块!

在实际编写测试代码之前,让我们先通过尝试那些自动生成的测试模版来探索测试是如何工作的。接着,我们会写一些真正的测试,调用我们编写的代码并断言它们的行为的正确性。

让我们创建一个新的库项目 adder,它会将两个数字相加:

$ cargo new adder --lib
     Created library `adder` project
$ cd adder

adder 库中 src/lib.rs 的内容应该看起来如示例 11-1 所示:

文件名:src/lib.rs

#[cfg(test)]
mod tests {
    #[test]
    fn it_works() {
        let result = 2 + 2;
        assert_eq!(result, 4);
    }
}

示例 11-1:由 cargo new 自动生成的测试模块和函数

现在让我们暂时忽略 tests 模块和 #[cfg(test)] 注解并只关注函数本身。注意 fn 行之前的 #[test]:这个属性表明这是一个测试函数,这样测试执行者就知道将其作为测试处理。tests 模块中也可以有非测试的函数来帮助我们建立通用场景或进行常见操作,必须每次都标明哪些函数是测试。

示例函数体通过使用 assert_eq! 宏来断言 2 加 2 等于 4。一个典型的测试的格式,就是像这个例子中的断言一样。接下来运行就可以看到测试通过。

cargo test 命令会运行项目中所有的测试,如示例 11-2 所示:

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.57s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

示例 11-2:运行自动生成测试的输出

Cargo 编译并运行了测试。可以看到 running 1 test 这一行。下一行显示了生成的测试函数的名称,它是 it_works,以及测试的运行结果,ok。接着可以看到全体测试运行结果的摘要:test result: ok. 意味着所有测试都通过了。1 passed; 0 failed 表示通过或失败的测试数量。

可以将一个测试标记为忽略这样在特定情况下它就不会运行;本章之后的“除非特别指定否则忽略某些测试”部分会介绍它。因为之前我们并没有将任何测试标记为忽略,所以摘要中会显示 0 ignored。我们也没有过滤需要运行的测试,所以摘要中会显示0 filtered out。在下一部分 “控制测试如何运行” 会讨论忽略和过滤测试。

0 measured 统计是针对性能测试的。性能测试(benchmark tests)在编写本书时,仍只能用于 Rust 开发版(nightly Rust)。请查看 性能测试的文档 了解更多。

测试输出中的以 Doc-tests adder 开头的这一部分是所有文档测试的结果。我们现在并没有任何文档测试,不过 Rust 会编译任何在 API 文档中的代码示例。这个功能帮助我们使文档和代码保持同步!在第十四章的 “文档注释作为测试” 部分会讲到如何编写文档测试。现在我们将忽略 Doc-tests 部分的输出。

让我们开始自定义测试来满足我们的需求。首先给 it_works 函数起个不同的名字,比如 exploration,像这样:

文件名:src/lib.rs

#[cfg(test)]
mod tests {
    #[test]
    fn exploration() {
        assert_eq!(2 + 2, 4);
    }
}

并再次运行 cargo test。现在输出中将出现 exploration 而不是 it_works

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.59s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::exploration ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

现在让我们增加另一个测试,不过这一次是一个会失败的测试!当测试函数中出现 panic 时测试就失败了。每一个测试都在一个新线程中运行,当主线程发现测试线程异常了,就将对应测试标记为失败。第九章讲到了最简单的造成 panic 的方法:调用 panic! 宏。写入新测试 another 后, src/lib.rs 现在看起来如示例 11-3 所示:

文件名:src/lib.rs

#[cfg(test)]
mod tests {
    #[test]
    fn exploration() {
        assert_eq!(2 + 2, 4);
    }

    #[test]
    fn another() {
        panic!("Make this test fail");
    }
}

示例 11-3:增加第二个因调用了 panic! 而失败的测试

再次 cargo test 运行测试。输出应该看起来像示例 11-4,它表明 exploration 测试通过了而 another 失败了:

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.72s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 2 tests
test tests::another ... FAILED
test tests::exploration ... ok

failures:

---- tests::another stdout ----
thread 'main' panicked at 'Make this test fail', src/lib.rs:10:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace


failures:
    tests::another

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

示例 11-4:一个测试通过和一个测试失败的测试结果

test tests::another 这一行是 FAILED 而不是 ok 了。在单独测试结果和摘要之间多了两个新的部分:第一个部分显示了测试失败的详细原因。在这个例子中,我们看到 another 因为在 src/lib.rs 的第 10 行 panicked at 'Make this test fail' 而失败的详细信息。下一部分列出了所有失败的测试,这在有很多测试和很多失败测试的详细输出时很有帮助。我们可以通过使用失败测试的名称来只运行这个测试,以便调试;下一部分 “控制测试如何运行” 会讲到更多运行测试的方法。

最后是摘要行:总体上讲,测试结果是 FAILED。有一个测试通过和一个测试失败。

现在我们见过不同场景中测试结果是什么样子的了,再来看看除 panic! 之外的一些在测试中有帮助的宏吧。

使用 assert! 宏来检查结果

assert! 宏由标准库提供,在希望确保测试中一些条件为 true 时非常有用。需要向 assert! 宏提供一个求值为布尔值的参数。如果值是 trueassert! 什么也不做,同时测试会通过。如果值为 falseassert! 调用 panic! 宏,这会导致测试失败。assert! 宏帮助我们检查代码是否以期望的方式运行。

回忆一下第五章中,示例 5-15 中有一个 Rectangle 结构体和一个 can_hold 方法,在示例 11-5 中再次使用它们。将它们放进 src/lib.rs 并使用 assert! 宏编写一些测试。

文件名:src/lib.rs

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width > other.width && self.height > other.height
    }
}

示例 11-5:第五章中 Rectangle 结构体和其 can_hold 方法

can_hold 方法返回一个布尔值,这意味着它完美符合 assert! 宏的使用场景。在示例 11-6 中,让我们编写一个 can_hold 方法的测试来作为练习,这里创建一个长为 8 宽为 7 的 Rectangle 实例,并假设它可以放得下另一个长为 5 宽为 1 的 Rectangle 实例:

文件名:src/lib.rs

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width > other.width && self.height > other.height
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn larger_can_hold_smaller() {
        let larger = Rectangle {
            width: 8,
            height: 7,
        };
        let smaller = Rectangle {
            width: 5,
            height: 1,
        };

        assert!(larger.can_hold(&smaller));
    }
}

示例 11-6:一个 can_hold 的测试,检查一个较大的矩形确实能放得下一个较小的矩形

注意在 tests 模块中新增加了一行:use super::*;tests 是一个普通的模块,它遵循第七章 “路径用于引用模块树中的项” 部分介绍的可见性规则。因为这是一个内部模块,要测试外部模块中的代码,需要将其引入到内部模块的作用域中。这里选择使用 glob 全局导入,以便在 tests 模块中使用所有在外部模块定义的内容。

我们将测试命名为 larger_can_hold_smaller,并创建所需的两个 Rectangle 实例。接着调用 assert! 宏并传递 larger.can_hold(&smaller) 调用的结果作为参数。这个表达式预期会返回 true,所以测试应该通过。让我们拭目以待!

$ cargo test
   Compiling rectangle v0.1.0 (file:///projects/rectangle)
    Finished test [unoptimized + debuginfo] target(s) in 0.66s
     Running unittests src/lib.rs (target/debug/deps/rectangle-6584c4561e48942e)

running 1 test
test tests::larger_can_hold_smaller ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests rectangle

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

它确实通过了!再来增加另一个测试,这一回断言一个更小的矩形不能放下一个更大的矩形:

文件名:src/lib.rs

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width > other.width && self.height > other.height
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn larger_can_hold_smaller() {
        // --snip--
        let larger = Rectangle {
            width: 8,
            height: 7,
        };
        let smaller = Rectangle {
            width: 5,
            height: 1,
        };

        assert!(larger.can_hold(&smaller));
    }

    #[test]
    fn smaller_cannot_hold_larger() {
        let larger = Rectangle {
            width: 8,
            height: 7,
        };
        let smaller = Rectangle {
            width: 5,
            height: 1,
        };

        assert!(!smaller.can_hold(&larger));
    }
}

因为这里 can_hold 函数的正确结果是 false ,我们需要将这个结果取反后传递给 assert! 宏。因此 can_hold 返回 false 时测试就会通过:

$ cargo test
   Compiling rectangle v0.1.0 (file:///projects/rectangle)
    Finished test [unoptimized + debuginfo] target(s) in 0.66s
     Running unittests src/lib.rs (target/debug/deps/rectangle-6584c4561e48942e)

running 2 tests
test tests::larger_can_hold_smaller ... ok
test tests::smaller_cannot_hold_larger ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests rectangle

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

两个通过的测试!现在让我们看看如果引入一个 bug 的话测试结果会发生什么。将 can_hold 方法中比较长度时本应使用大于号的地方改成小于号:

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

// --snip--
impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width < other.width && self.height > other.height
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn larger_can_hold_smaller() {
        let larger = Rectangle {
            width: 8,
            height: 7,
        };
        let smaller = Rectangle {
            width: 5,
            height: 1,
        };

        assert!(larger.can_hold(&smaller));
    }

    #[test]
    fn smaller_cannot_hold_larger() {
        let larger = Rectangle {
            width: 8,
            height: 7,
        };
        let smaller = Rectangle {
            width: 5,
            height: 1,
        };

        assert!(!smaller.can_hold(&larger));
    }
}

现在运行测试会产生:

$ cargo test
   Compiling rectangle v0.1.0 (file:///projects/rectangle)
    Finished test [unoptimized + debuginfo] target(s) in 0.66s
     Running unittests src/lib.rs (target/debug/deps/rectangle-6584c4561e48942e)

running 2 tests
test tests::larger_can_hold_smaller ... FAILED
test tests::smaller_cannot_hold_larger ... ok

failures:

---- tests::larger_can_hold_smaller stdout ----
thread 'main' panicked at 'assertion failed: larger.can_hold(&smaller)', src/lib.rs:28:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace


failures:
    tests::larger_can_hold_smaller

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

我们的测试捕获了 bug!因为 larger.length 是 8 而 smaller.length 是 5,can_hold 中的长度比较现在因为 8 不小于 5 而返回 false

使用 assert_eq!assert_ne! 宏来测试相等

测试功能的一个常用方法是将需要测试代码的值与期望值做比较,并检查是否相等。可以通过向 assert! 宏传递一个使用 == 运算符的表达式来做到。不过这个操作实在是太常见了,以至于标准库提供了一对宏来更方便的处理这些操作 —— assert_eq!assert_ne!。这两个宏分别比较两个值是相等还是不相等。当断言失败时它们也会打印出这两个值具体是什么,以便于观察测试 为什么 失败,而 assert! 只会打印出它从 == 表达式中得到了 false 值,而不是打印导致 false 的两个值。

示例 11-7 中,让我们编写一个对其参数加二并返回结果的函数 add_two。接着使用 assert_eq! 宏测试这个函数。

文件名:src/lib.rs

pub fn add_two(a: i32) -> i32 {
    a + 2
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_adds_two() {
        assert_eq!(4, add_two(2));
    }
}

示例 11-7:使用 assert_eq! 宏测试 add_two 函数

测试通过了!

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.58s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

我们传递给 assert_eq! 宏的第一个参数 4 ,它等于调用 add_two(2) 的结果。测试中的这一行 test tests::it_adds_two ... okok 表明测试通过!

在代码中引入一个 bug 来看看使用 assert_eq! 的测试失败是什么样的。修改 add_two 函数的实现使其加 3

pub fn add_two(a: i32) -> i32 {
    a + 3
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_adds_two() {
        assert_eq!(4, add_two(2));
    }
}

再次运行测试:

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.61s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::it_adds_two ... FAILED

failures:

---- tests::it_adds_two stdout ----
thread 'main' panicked at 'assertion failed: `(left == right)`
  left: `4`,
 right: `5`', src/lib.rs:11:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace


failures:
    tests::it_adds_two

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

测试捕获到了 bug!it_adds_two 测试失败,错误信息告诉我们断言失败了,它告诉我们 assertion failed: `(left == right)` 以及 leftright 的值是什么。这个错误信息有助于我们开始调试:它说 assert_eq!left 参数是 4,而 right 参数,也就是 add_two(2) 的结果,是 5。可以想象当有很多测试在运行时这些信息是多么的有用。

需要注意的是,在一些语言和测试框架中,断言两个值相等的函数的参数被称为 expectedactual,而且指定参数的顺序非常重要。然而在 Rust 中,它们则叫做 leftright,同时指定期望的值和被测试代码产生的值的顺序并不重要。这个测试中的断言也可以写成 assert_eq!(add_two(2), 4),这时失败信息仍同样是 assertion failed: `(left == right)`

assert_ne! 宏在传递给它的两个值不相等时通过,而在相等时失败。在代码按预期运行,我们不确定值 是什么,不过能确定值绝对 不会 是什么的时候,这个宏最有用处。例如,如果一个函数保证会以某种方式改变其输出,不过这种改变方式是由运行测试时是星期几来决定的,这时最好的断言可能就是函数的输出不等于其输入。

assert_eq!assert_ne! 宏在底层分别使用了 ==!=。当断言失败时,这些宏会使用调试格式打印出其参数,这意味着被比较的值必须实现了 PartialEqDebug trait。所有的基本类型和大部分标准库类型都实现了这些 trait。对于自定义的结构体和枚举,需要实现 PartialEq 才能断言它们的值是否相等。需要实现 Debug 才能在断言失败时打印它们的值。因为这两个 trait 都是派生 trait,如第五章示例 5-12 所提到的,通常可以直接在结构体或枚举上添加 #[derive(PartialEq, Debug)] 注解。附录 C “可派生 trait” 中有更多关于这些和其他派生 trait 的详细信息。

自定义失败信息

你也可以向 assert!assert_eq!assert_ne! 宏传递一个可选的失败信息参数,可以在测试失败时将自定义失败信息一同打印出来。任何在 assert! 的一个必需参数和 assert_eq!assert_ne! 的两个必需参数之后指定的参数都会传递给 format! 宏(在第八章的 “使用 + 运算符或 format! 宏拼接字符串” 部分讨论过),所以可以传递一个包含 {} 占位符的格式字符串和需要放入占位符的值。自定义信息有助于记录断言的意义;当测试失败时就能更好的理解代码出了什么问题。

例如,比如说有一个根据人名进行问候的函数,而我们希望测试将传递给函数的人名显示在输出中:

文件名:src/lib.rs

pub fn greeting(name: &str) -> String {
    format!("Hello {}!", name)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn greeting_contains_name() {
        let result = greeting("Carol");
        assert!(result.contains("Carol"));
    }
}

这个程序的需求还没有被确定,因此问候文本开头的 Hello 文本很可能会改变。然而我们并不想在需求改变时不得不更新测试,所以相比检查 greeting 函数返回的确切值,我们将仅仅断言输出的文本中包含输入参数。

让我们通过将 greeting 改为不包含 name 在代码中引入一个 bug 来测试失败时是怎样的:

pub fn greeting(name: &str) -> String {
    String::from("Hello!")
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn greeting_contains_name() {
        let result = greeting("Carol");
        assert!(result.contains("Carol"));
    }
}

运行测试会产生:

$ cargo test
   Compiling greeter v0.1.0 (file:///projects/greeter)
    Finished test [unoptimized + debuginfo] target(s) in 0.91s
     Running unittests src/lib.rs (target/debug/deps/greeter-170b942eb5bf5e3a)

running 1 test
test tests::greeting_contains_name ... FAILED

failures:

---- tests::greeting_contains_name stdout ----
thread 'main' panicked at 'assertion failed: result.contains(\"Carol\")', src/lib.rs:12:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace


failures:
    tests::greeting_contains_name

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

结果仅仅告诉了我们断言失败了和失败的行号。一个更有用的失败信息应该打印出 greeting 函数的值。让我们为测试函数增加一个自定义失败信息参数:带占位符的格式字符串,以及 greeting 函数的值:

pub fn greeting(name: &str) -> String {
    String::from("Hello!")
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn greeting_contains_name() {
        let result = greeting("Carol");
        assert!(
            result.contains("Carol"),
            "Greeting did not contain name, value was `{}`",
            result
        );
    }
}

现在如果再次运行测试,将会看到更有价值的信息:

$ cargo test
   Compiling greeter v0.1.0 (file:///projects/greeter)
    Finished test [unoptimized + debuginfo] target(s) in 0.93s
     Running unittests src/lib.rs (target/debug/deps/greeter-170b942eb5bf5e3a)

running 1 test
test tests::greeting_contains_name ... FAILED

failures:

---- tests::greeting_contains_name stdout ----
thread 'main' panicked at 'Greeting did not contain name, value was `Hello!`', src/lib.rs:12:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace


failures:
    tests::greeting_contains_name

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

可以在测试输出中看到所取得的确切的值,这会帮助我们理解真正发生了什么,而不是期望发生什么。

使用 should_panic 检查 panic

除了检查返回值之外,检查代码是否按照期望处理错误也是很重要的。例如,考虑第九章示例 9-10 创建的 Guess 类型。其他使用 Guess 的代码都是基于 Guess 实例仅有的值范围在 1 到 100 的前提。可以编写一个测试来确保创建一个超出范围的值的 Guess 实例会 panic。

可以通过对函数增加另一个属性 should_panic 来实现这些。这个属性在函数中的代码 panic 时会通过,而在其中的代码没有 panic 时失败。

示例 11-8 展示了一个检查 Guess::new 是否按照我们的期望出错的测试:

文件名:src/lib.rs

pub struct Guess {
    value: i32,
}

impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1 || value > 100 {
            panic!("Guess value must be between 1 and 100, got {}.", value);
        }

        Guess { value }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic]
    fn greater_than_100() {
        Guess::new(200);
    }
}

示例 11-8:测试会造成 panic! 的条件

#[should_panic] 属性位于 #[test] 之后,对应的测试函数之前。让我们看看测试通过时它是什么样子:

$ cargo test
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished test [unoptimized + debuginfo] target(s) in 0.58s
     Running unittests src/lib.rs (target/debug/deps/guessing_game-57d70c3acb738f4d)

running 1 test
test tests::greater_than_100 - should panic ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests guessing_game

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

看起来不错!现在在代码中引入 bug,移除 new 函数在值大于 100 时会 panic 的条件:

pub struct Guess {
    value: i32,
}

// --snip--
impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1 {
            panic!("Guess value must be between 1 and 100, got {}.", value);
        }

        Guess { value }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic]
    fn greater_than_100() {
        Guess::new(200);
    }
}

如果运行示例 11-8 的测试,它会失败:

$ cargo test
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished test [unoptimized + debuginfo] target(s) in 0.62s
     Running unittests src/lib.rs (target/debug/deps/guessing_game-57d70c3acb738f4d)

running 1 test
test tests::greater_than_100 - should panic ... FAILED

failures:

---- tests::greater_than_100 stdout ----
note: test did not panic as expected

failures:
    tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

这回并没有得到非常有用的信息,不过一旦我们观察测试函数,会发现它标注了 #[should_panic]。这个错误意味着代码中测试函数 Guess::new(200) 并没有产生 panic。

然而 should_panic 测试结果可能会非常含糊不清。should_panic 甚至在一些不是我们期望的原因而导致 panic 时也会通过。为了使 should_panic 测试结果更精确,我们可以给 should_panic 属性增加一个可选的 expected 参数。测试工具会确保错误信息中包含其提供的文本。例如,考虑示例 11-9 中修改过的 Guess,这里 new 函数根据其值是过大还或者过小而提供不同的 panic 信息:

文件名:src/lib.rs

pub struct Guess {
    value: i32,
}

// --snip--

impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1 {
            panic!(
                "Guess value must be greater than or equal to 1, got {}.",
                value
            );
        } else if value > 100 {
            panic!(
                "Guess value must be less than or equal to 100, got {}.",
                value
            );
        }

        Guess { value }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic(expected = "less than or equal to 100")]
    fn greater_than_100() {
        Guess::new(200);
    }
}

示例 11-9:一个会带有特定错误信息的 panic! 条件的测试

这个测试会通过,因为 should_panic 属性中 expected 参数提供的值是 Guess::new 函数 panic 信息的子串。我们可以指定期望的整个 panic 信息,在这个例子中是 Guess value must be less than or equal to 100, got 200.expected 信息的选择取决于 panic 信息有多独特或动态,和你希望测试有多准确。在这个例子中,错误信息的子字符串足以确保函数在 else if value > 100 的情况下运行。

为了观察带有 expected 信息的 should_panic 测试失败时会发生什么,让我们再次引入一个 bug,将 if value < 1else if value > 100 的代码块对换:

pub struct Guess {
    value: i32,
}

impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1 {
            panic!(
                "Guess value must be less than or equal to 100, got {}.",
                value
            );
        } else if value > 100 {
            panic!(
                "Guess value must be greater than or equal to 1, got {}.",
                value
            );
        }

        Guess { value }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic(expected = "less than or equal to 100")]
    fn greater_than_100() {
        Guess::new(200);
    }
}

这一次运行 should_panic 测试,它会失败:

$ cargo test
   Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
    Finished test [unoptimized + debuginfo] target(s) in 0.66s
     Running unittests src/lib.rs (target/debug/deps/guessing_game-57d70c3acb738f4d)

running 1 test
test tests::greater_than_100 - should panic ... FAILED

failures:

---- tests::greater_than_100 stdout ----
thread 'main' panicked at 'Guess value must be greater than or equal to 1, got 200.', src/lib.rs:13:13
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
note: panic did not contain expected string
      panic message: `"Guess value must be greater than or equal to 1, got 200."`,
 expected substring: `"less than or equal to 100"`

failures:
    tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

失败信息表明测试确实如期望 panic 了,不过 panic 信息中并没有包含 expected 信息 'Guess value must be less than or equal to 100'。而我们得到的 panic 信息是 'Guess value must be greater than or equal to 1, got 200.'。这样就可以开始寻找 bug 在哪了!

Result<T, E> 用于测试

目前为止,我们编写的测试在失败时都会 panic。我们也可以使用 Result<T, E> 编写测试!这是一个延伸自示例 11-1 的测试,使用 Result<T, E> 重写,并在失败时返回 Err 而非 panic:

#[cfg(test)]
mod tests {
    #[test]
    fn it_works() -> Result<(), String> {
        if 2 + 2 == 4 {
            Ok(())
        } else {
            Err(String::from("two plus two does not equal four"))
        }
    }
}

现在 it_works 函数的返回值类型为 Result<(), String>。在函数体中,不同于调用 assert_eq! 宏,而是在测试通过时返回 Ok(()),在测试失败时返回带有 StringErr

这样编写测试来返回 Result<T, E> 就可以在函数体中使用问号运算符,如此可以方便的编写任何运算符会返回 Err 成员的测试。

不能对这些使用 Result<T, E> 的测试使用 #[should_panic] 注解。为了断言一个操作返回 Err 成员,不要使用对 Result<T, E> 值使用问号表达式(?)。而是使用 assert!(value.is_err())

现在你知道了几种编写测试的方法,让我们看看运行测试时会发生什么,以及可以用于 cargo test 的不同选项。

控制测试如何运行

ch11-02-running-tests.md
commit 34314c10f699cc882d4e0b06f2a24bd37a5435f2

就像 cargo run 会编译代码并运行生成的二进制文件一样,cargo test 在测试模式下编译代码并运行生成的测试二进制文件。cargo test 产生的二进制文件的默认行为是并发运行所有的测试,并截获测试运行过程中产生的输出,阻止它们被显示出来,使得阅读测试结果相关的内容变得更容易。不过可以指定命令行参数来改变 cargo test 的默认行为。

可以将一部分命令行参数传递给 cargo test,而将另外一部分传递给生成的测试二进制文件。为了分隔这两种参数,需要先列出传递给 cargo test 的参数,接着是分隔符 --,再之后是传递给测试二进制文件的参数。运行 cargo test --help 会提示 cargo test 的有关参数,而运行 cargo test -- --help 可以提示在分隔符之后使用的有关参数。

并行或连续的运行测试

当运行多个测试时,Rust 默认使用线程来并行运行。这意味着测试会更快地运行完毕,所以你可以更快的得到代码能否工作的反馈。因为测试是在同时运行的,你应该确保测试不能相互依赖,或依赖任何共享的状态,包括依赖共享的环境,比如当前工作目录或者环境变量。

举个例子,每一个测试都运行一些代码,假设这些代码都在硬盘上创建一个 test-output.txt 文件并写入一些数据。接着每一个测试都读取文件中的数据并断言这个文件包含特定的值,而这个值在每个测试中都是不同的。因为所有测试都是同时运行的,一个测试可能会在另一个测试读写文件过程中修改了文件。那么第二个测试就会失败,并不是因为代码不正确,而是因为测试并行运行时相互干扰。一个解决方案是使每一个测试读写不同的文件;另一个解决方案是一次运行一个测试。

如果你不希望测试并行运行,或者想要更加精确的控制线程的数量,可以传递 --test-threads 参数和希望使用线程的数量给测试二进制文件。例如:

$ cargo test -- --test-threads=1

这里将测试线程设置为 1,告诉程序不要使用任何并行机制。这也会比并行运行花费更多时间,不过在有共享的状态时,测试就不会潜在的相互干扰了。

显示函数输出

默认情况下,当测试通过时,Rust 的测试库会截获打印到标准输出的所有内容。比如在测试中调用了 println! 而测试通过了,我们将不会在终端看到 println! 的输出:只会看到说明测试通过的提示行。如果测试失败了,则会看到所有标准输出和其他错误信息。

例如,示例 11-10 有一个无意义的函数,它打印出其参数的值并接着返回 10。接着还有一个会通过的测试和一个会失败的测试:

文件名:src/lib.rs

fn prints_and_returns_10(a: i32) -> i32 {
    println!("I got the value {}", a);
    10
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn this_test_will_pass() {
        let value = prints_and_returns_10(4);
        assert_eq!(10, value);
    }

    #[test]
    fn this_test_will_fail() {
        let value = prints_and_returns_10(8);
        assert_eq!(5, value);
    }
}

示例 11-10:一个调用了 println! 的函数的测试

运行 cargo test 将会看到这些测试的输出:

$ cargo test
   Compiling silly-function v0.1.0 (file:///projects/silly-function)
    Finished test [unoptimized + debuginfo] target(s) in 0.58s
     Running unittests src/lib.rs (target/debug/deps/silly_function-160869f38cff9166)

running 2 tests
test tests::this_test_will_fail ... FAILED
test tests::this_test_will_pass ... ok

failures:

---- tests::this_test_will_fail stdout ----
I got the value 8
thread 'main' panicked at 'assertion failed: `(left == right)`
  left: `5`,
 right: `10`', src/lib.rs:19:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace


failures:
    tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

注意输出中不会出现测试通过时打印的内容,即 I got the value 4。因为当测试通过时,这些输出会被截获。失败测试的输出 I got the value 8 ,则出现在输出的测试摘要部分,同时也显示了测试失败的原因。

如果你希望也能看到通过的测试中打印的值,也可以在结尾加上 --show-output 告诉 Rust 显示成功测试的输出。

$ cargo test -- --show-output

使用 --show-output 参数再次运行示例 11-10 中的测试会显示如下输出:

$ cargo test -- --show-output
   Compiling silly-function v0.1.0 (file:///projects/silly-function)
    Finished test [unoptimized + debuginfo] target(s) in 0.60s
     Running unittests src/lib.rs (target/debug/deps/silly_function-160869f38cff9166)

running 2 tests
test tests::this_test_will_fail ... FAILED
test tests::this_test_will_pass ... ok

successes:

---- tests::this_test_will_pass stdout ----
I got the value 4


successes:
    tests::this_test_will_pass

failures:

---- tests::this_test_will_fail stdout ----
I got the value 8
thread 'main' panicked at 'assertion failed: `(left == right)`
  left: `5`,
 right: `10`', src/lib.rs:19:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace


failures:
    tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `--lib`

通过指定名字来运行部分测试

有时运行整个测试集会耗费很长时间。如果你负责特定位置的代码,你可能会希望只运行与这些代码相关的测试。你可以向 cargo test 传递所希望运行的测试名称的参数来选择运行哪些测试。

为了展示如何运行部分测试,示例 11-11 为 add_two 函数创建了三个测试,我们可以选择具体运行哪一个:

文件名:src/lib.rs

pub fn add_two(a: i32) -> i32 {
    a + 2
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn add_two_and_two() {
        assert_eq!(4, add_two(2));
    }

    #[test]
    fn add_three_and_two() {
        assert_eq!(5, add_two(3));
    }

    #[test]
    fn one_hundred() {
        assert_eq!(102, add_two(100));
    }
}

示例 11-11:不同名称的三个测试

如果没有传递任何参数就运行测试,如你所见,所有测试都会并行运行:

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.62s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 3 tests
test tests::add_three_and_two ... ok
test tests::add_two_and_two ... ok
test tests::one_hundred ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

运行单个测试

可以向 cargo test 传递任意测试的名称来只运行这个测试:

$ cargo test one_hundred
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.69s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::one_hundred ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 2 filtered out; finished in 0.00s

只有名称为 one_hundred 的测试被运行了;因为其余两个测试并不匹配这个名称。测试输出在摘要行的结尾显示了 2 filtered out 表明还存在比本次所运行的测试更多的测试没有被运行。

不能像这样指定多个测试名称;只有传递给 cargo test 的第一个值才会被使用。不过有运行多个测试的方法。

过滤运行多个测试

我们可以指定部分测试的名称,任何名称匹配这个名称的测试会被运行。例如,因为头两个测试的名称包含 add,可以通过 cargo test add 来运行这两个测试:

$ cargo test add
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.61s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 2 tests
test tests::add_three_and_two ... ok
test tests::add_two_and_two ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out; finished in 0.00s

这运行了所有名字中带有 add 的测试,也过滤掉了名为 one_hundred 的测试。同时注意测试所在的模块也是测试名称的一部分,所以可以通过模块名来运行一个模块中的所有测试。

除非特别指定否则忽略某些测试

有时一些特定的测试执行起来是非常耗费时间的,所以在大多数运行 cargo test 的时候希望能排除它们。虽然可以通过参数列举出所有希望运行的测试来做到,也可以使用 ignore 属性来标记耗时的测试并排除它们,如下所示:

文件名:src/lib.rs

#[test]
fn it_works() {
    assert_eq!(2 + 2, 4);
}

#[test]
#[ignore]
fn expensive_test() {
    // 需要运行一个小时的代码
}

对于想要排除的测试,我们在 #[test] 之后增加了 #[ignore] 行。现在如果运行测试,就会发现 it_works 运行了,而 expensive_test 没有运行:

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.60s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 2 tests
test expensive_test ... ignored
test it_works ... ok

test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

expensive_test 被列为 ignored,如果我们只希望运行被忽略的测试,可以使用 cargo test -- --ignored

$ cargo test -- --ignored
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.61s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test expensive_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out; finished in 0.00s

   Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

通过控制运行哪些测试,你可以确保能够快速地运行 cargo test 。当你需要运行 ignored 的测试时,可以执行 cargo test -- --ignored。如果你希望不管是否忽略都要运行全部测试,可以运行 cargo test -- --include-ignored

测试的组织结构

ch11-03-test-organization.md
commit 654d8902d380dbb8dd94ed2e548dfc0aa80c07cb

本章一开始就提到,测试是一个复杂的概念,而且不同的开发者也采用不同的技术和组织。Rust 社区倾向于根据测试的两个主要分类来考虑问题:单元测试unit tests)与 集成测试integration tests)。单元测试倾向于更小而更集中,在隔离的环境中一次测试一个模块,或者是测试私有接口。而集成测试对于你的库来说则完全是外部的。它们与其他外部代码一样,通过相同的方式使用你的代码,只测试公有接口而且每个测试都有可能会测试多个模块。

为了保证你的库能够按照你的预期运行,从独立和整体的角度编写这两类测试都是非常重要的。

单元测试

单元测试的目的是在与其他部分隔离的环境中测试每一个单元的代码,以便于快速而准确地验证某个单元的代码功能是否符合预期。单元测试与它们要测试的代码共同存放在位于 src 目录下相同的文件中。规范是在每个文件中创建包含测试函数的 tests 模块,并使用 cfg(test) 标注模块。

测试模块和 #[cfg(test)]

测试模块的 #[cfg(test)] 注解告诉 Rust 只在执行 cargo test 时才编译和运行测试代码,而在运行 cargo build 时不这么做。这在只希望构建库的时候可以节省编译时间,并且因为它们并没有包含测试,所以能减少编译产生的文件的大小。与之对应的集成测试因为位于另一个文件夹,所以它们并不需要 #[cfg(test)] 注解。然而单元测试位于与源码相同的文件中,所以你需要使用 #[cfg(test)] 来指定它们不应该被包含进编译结果中。

回忆本章第一部分新建的 adder 项目,Cargo 为我们生成了如下代码:

文件名:src/lib.rs

#[cfg(test)]
mod tests {
    #[test]
    fn it_works() {
        let result = 2 + 2;
        assert_eq!(result, 4);
    }
}

上述代码就是自动生成的测试模块。cfg 属性代表配置configuration) ,它告诉 Rust,接下来的项,只有在给定特定配置选项时,才会被包含。在这种情况下,配置选项是 test,即 Rust 所提供的用于编译和运行测试的配置选项。通过使用 cfg 属性,Cargo 只会在我们主动使用 cargo test 运行测试时才编译测试代码。这包括测试模块中可能存在的帮助函数,以及标注为 #[test] 的函数。

测试私有函数

测试社区中一直存在关于是否应该对私有函数直接进行测试的论战,而在其他语言中想要测试私有函数是一件困难的,甚至是不可能的事。不过无论你坚持哪种测试意识形态,Rust 的私有性规则确实允许你测试私有函数。考虑示例 11-12 中带有私有函数 internal_adder 的代码:

文件名:src/lib.rs

pub fn add_two(a: i32) -> i32 {
    internal_adder(a, 2)
}

fn internal_adder(a: i32, b: i32) -> i32 {
    a + b
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn internal() {
        assert_eq!(4, internal_adder(2, 2));
    }
}

示例 11-12:测试私有函数

注意 internal_adder 函数并没有标记为 pub。测试也不过是 Rust 代码,同时 tests 也仅仅是另一个模块。正如 “路径用于引用模块树中的项” 部分所说,子模块的项可以使用其上级模块的项。在测试中,我们通过 use super::*test 模块的父模块的所有项引入了作用域,接着测试调用了 internal_adder。如果你并不认为应该测试私有函数,Rust 也不会强迫你这么做。

集成测试

在 Rust 中,集成测试对于你需要测试的库来说完全是外部的。同其他使用库的代码一样使用库文件,也就是说它们只能调用一部分库中的公有 API。集成测试的目的是测试库的多个部分能否一起正常工作。一些单独能正确运行的代码单元集成在一起也可能会出现问题,所以集成测试的覆盖率也是很重要的。为了创建集成测试,你需要先创建一个 tests 目录。

tests 目录

为了编写集成测试,需要在项目根目录创建一个 tests 目录,与 src 同级。Cargo 知道如何去寻找这个目录中的集成测试文件。接着可以随意在这个目录中创建任意多的测试文件,Cargo 会将每一个文件当作单独的 crate 来编译。

让我们来创建一个集成测试。保留示例 11-12 中 src/lib.rs 的代码。创建一个 tests 目录,新建一个文件 tests/integration_test.rs。目录结构应该看起来像这样:

adder
├── Cargo.lock
├── Cargo.toml
├── src
│   └── lib.rs
└── tests
    └── integration_test.rs

将示例 11-13 中的代码输入到 tests/integration_test.rs 文件中。

文件名:tests/integration_test.rs

use adder;

#[test]
fn it_adds_two() {
    assert_eq!(4, adder::add_two(2));
}

示例 11-13:一个 adder crate 中函数的集成测试

因为每一个 tests 目录中的测试文件都是完全独立的 crate,所以需要在每一个文件中导入库。为此与单元测试不同,我们需要在文件顶部添加 use adder

并不需要将 tests/integration_test.rs 中的任何代码标注为 #[cfg(test)]tests 文件夹在 Cargo 中是一个特殊的文件夹,Cargo 只会在运行 cargo test 时编译这个目录中的文件。现在就运行 cargo test 试试:

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 1.31s
     Running unittests src/lib.rs (target/debug/deps/adder-1082c4b063a8fbe6)

running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

     Running tests/integration_test.rs (target/debug/deps/integration_test-1082c4b063a8fbe6)

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

现在有了三个部分的输出:单元测试、集成测试和文档测试。注意如果一个部分的任何测试失败,之后的部分都不会运行。例如如果一个单元测试失败,则不会有任何集成测试和文档测试的输出,因为这些测试只会在所有单元测试都通过后才会执行。

第一部分单元测试与我们之前见过的一样:每个单元测试一行(示例 11-12 中有一个叫做 internal 的测试),接着是一个单元测试的摘要行。

集成测试部分以行 Running tests/integration_test.rs开头。接下来每一行是一个集成测试中的测试函数,以及一个位于 Doc-tests adder 部分之前的集成测试的摘要行。

每一个集成测试文件有对应的测试结果部分,所以如果在 tests 目录中增加更多文件,测试结果中就会有更多集成测试结果部分。

我们仍然可以通过指定测试函数的名称作为 cargo test 的参数来运行特定集成测试。也可以使用 cargo test--test 后跟文件的名称来运行某个特定集成测试文件中的所有测试:

$ cargo test --test integration_test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.64s
     Running tests/integration_test.rs (target/debug/deps/integration_test-82e7799c1bc62298)

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

这个命令只运行了 tests 目录中我们指定的文件 integration_test.rs 中的测试。

集成测试中的子模块

随着集成测试的增加,你可能希望在 tests 目录创建更多文件以便更好地组织它们,例如根据测试的功能来将测试分组。如前所述,tests 目录中的每一个文件都被编译成一个单独的 crate,这有助于创建独立的作用域,以便更接近于最终用户使用你的 crate 的方式。但这意味着,tests 目录中的文件的行为,和你在第七章中学习如何将代码分为模块和文件时,学到的 src 中的文件的行为不一样。

当你有一些在多个集成测试文件都会用到的帮助函数,而你尝试按照第七章 “将模块移动到其他文件” 部分的步骤将它们提取到一个通用的模块中时, tests 目录中文件行为的不同就会凸显出来。例如,如果我们可以创建 一个tests/common.rs 文件并创建一个名叫 setup 的函数,我们希望这个函数能被多个测试文件的测试函数调用:

文件名:tests/common.rs

pub fn setup() {
    // setup code specific to your library's tests would go here
}

如果再次运行测试,将会在测试结果中看到一个新的对应 common.rs 文件的测试结果部分,即便这个文件并没有包含任何测试函数,也没有任何地方调用了 setup 函数:

$ cargo test
   Compiling adder v0.1.0 (file:///projects/adder)
    Finished test [unoptimized + debuginfo] target(s) in 0.89s
     Running unittests src/lib.rs (target/debug/deps/adder-92948b65e88960b4)

running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

     Running tests/common.rs (target/debug/deps/common-92948b65e88960b4)

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

     Running tests/integration_test.rs (target/debug/deps/integration_test-92948b65e88960b4)

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

   Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

我们并不想要common 出现在测试结果中显示 running 0 tests 。我们只是希望其能被其他多个集成测试文件中调用罢了。

为了不让 common 出现在测试输出中,我们将创建 tests/common/mod.rs ,而不是创建 tests/common.rs 。现在项目目录结构看起来像这样:

├── Cargo.lock
├── Cargo.toml
├── src
│   └── lib.rs
└── tests
    ├── common
    │   └── mod.rs
    └── integration_test.rs

这是一种老的命名规范,正如第七章 “另一种文件路径” 中提到的 Rust 仍然理解它们。这样命名告诉 Rust 不要将 common 看作一个集成测试文件。将 setup 函数代码移动到 tests/common/mod.rs 并删除 tests/common.rs 文件之后,测试输出中将不会出现这一部分。tests 目录中的子目录不会被作为单独的 crate 编译或作为一个测试结果部分出现在测试输出中。

一旦拥有了 tests/common/mod.rs,就可以将其作为模块以便在任何集成测试文件中使用。这里是一个 tests/integration_test.rs 中调用 setup 函数的 it_adds_two 测试的例子:

文件名:tests/integration_test.rs

use adder;

mod common;

#[test]
fn it_adds_two() {
    common::setup();
    assert_eq!(4, adder::add_two(2));
}

注意 mod common; 声明与示例 7-21 中展示的模块声明相同。接着在测试函数中就可以调用 common::setup() 了。

二进制 crate 的集成测试

如果项目是二进制 crate 并且只包含 src/main.rs 而没有 src/lib.rs,这样就不可能在 tests 目录创建集成测试并使用 extern crate 导入 src/main.rs 中定义的函数。只有库 crate 才会向其他 crate 暴露了可供调用和使用的函数;二进制 crate 只意在单独运行。

这就是许多 Rust 二进制项目使用一个简单的 src/main.rs 调用 src/lib.rs 中的逻辑的原因之一。因为通过这种结构,集成测试 就可以 通过 extern crate 测试库 crate 中的主要功能了,而如果这些重要的功能没有问题的话,src/main.rs 中的少量代码也就会正常工作且不需要测试。

总结

Rust 的测试功能提供了一个确保即使你改变了函数的实现方式,也能继续以期望的方式运行的途径。单元测试独立地验证库的不同部分,也能够测试私有函数实现细节。集成测试则检查多个部分是否能结合起来正确地工作,并像其他外部代码那样测试库的公有 API。即使 Rust 的类型系统和所有权规则可以帮助避免一些 bug,不过测试对于减少代码中不符合期望行为的逻辑 bug 仍然是很重要的。

让我们将本章和其他之前章节所学的知识组合起来,在下一章一起编写一个项目!

一个 I/O 项目:构建一个命令行程序

ch12-00-an-io-project.md
commit 02a168ed346042f07010f8b65b4eeed623dd31d1

本章既是一个目前所学的很多技能的概括,也是一个更多标准库功能的探索。我们将构建一个与文件和命令行输入/输出交互的命令行工具来练习现在一些你已经掌握的 Rust 技能。

Rust 的运行速度、安全性、单二进制文件输出和跨平台支持使其成为创建命令行程序的绝佳选择,所以我们的项目将创建一个我们自己版本的经典命令行搜索工具:grep。grep 是 “Globally search a Regular Expression and Print.” 的首字母缩写。grep 最简单的使用场景是在特定文件中搜索指定字符串。为此,grep 获取一个文件路径和一个字符串作为参数,接着读取文件并找到其中包含字符串参数的行,然后打印出这些行。

在这个过程中,我们会展示如何让我们的命令行工具利用很多命令行工具中用到的终端功能。读取环境变量来使得用户可以配置工具的行为。打印到标准错误控制流(stderr)而不是标准输出(stdout),例如这样用户可以选择将成功输出重定向到文件中的同时仍然在屏幕上显示错误信息。

一位 Rust 社区的成员,Andrew Gallant,已经创建了一个功能完整且非常快速的 grep 版本,叫做 ripgrep。相比之下,我们的版本将非常简单,本章将教会你一些帮助理解像 ripgrep 这样真实项目的背景知识。

我们的 grep 项目将会结合之前所学的一些内容:

另外还会简要的讲到闭包、迭代器和 trait 对象,它们分别会在 第十三章第十七章 中详细介绍。

接受命令行参数

ch12-01-accepting-command-line-arguments.md
commit 02a168ed346042f07010f8b65b4eeed623dd31d1

一如既往使用 cargo new 新建一个项目,我们称之为 minigrep 以便与可能已经安装在系统上的 grep 工具相区别:

$ cargo new minigrep
     Created binary (application) `minigrep` project
$ cd minigrep

第一个任务是让 minigrep 能够接受两个命令行参数:文件路径和要搜索的字符串。也就是说我们希望能够使用 cargo run、要搜索的字符串和被搜索的文件的路径来运行程序,像这样:

$ cargo run -- searchstring example-filename.txt

现在 cargo new 生成的程序忽略任何传递给它的参数。Crates.io 上有一些现成的库可以帮助我们接受命令行参数,不过我们正在学习这些内容,让我们自己来实现一个。

读取参数值

为了确保 minigrep 能够获取传递给它的命令行参数的值,我们需要一个 Rust 标准库提供的函数 std::env::args。这个函数返回一个传递给程序的命令行参数的 迭代器iterator)。我们会在 第十三章 全面的介绍它们。但是现在只需理解迭代器的两个细节:迭代器生成一系列的值,可以在迭代器上调用 collect 方法将其转换为一个集合,比如包含所有迭代器产生元素的 vector。

示例 12-1 中允许 minigrep 程序读取任何传递给它的命令行参数并将其收集到一个 vector 中。

文件名:src/main.rs

use std::env;

fn main() {
    let args: Vec<String> = env::args().collect();
    dbg!(args);
}

示例 12-1:将命令行参数收集到一个 vector 中并打印出来

首先使用 use 语句来将 std::env 模块引入作用域以便可以使用它的 args 函数。注意 std::env::args 函数被嵌套进了两层模块中。正如 第七章 讲到的,当所需函数嵌套了多于一层模块时,通常将父模块引入作用域,而不是其自身。这便于我们利用 std::env 中的其他函数。这比增加了 use std::env::args; 后仅仅使用 args 调用函数要更明确一些,因为 args 容易被错认成一个定义于当前模块的函数。

args 函数和无效的 Unicode

注意 std::env::args 在其任何参数包含无效 Unicode 字符时会 panic。如果你需要接受包含无效 Unicode 字符的参数,使用 std::env::args_os 代替。这个函数返回 OsString 值而不是 String 值。这里出于简单考虑使用了 std::env::args,因为 OsString 值每个平台都不一样而且比 String 值处理起来更为复杂。

main 函数的第一行,我们调用了 env::args,并立即使用 collect 来创建了一个包含迭代器所有值的 vector。collect 可以被用来创建很多类型的集合,所以这里显式注明 args 的类型来指定我们需要一个字符串 vector。虽然在 Rust 中我们很少会需要注明类型,然而 collect 是一个经常需要注明类型的函数,因为 Rust 不能推断出你想要什么类型的集合。

最后,我们使用调试宏打印出 vector。让我们尝试分别用两种方式(不包含参数和包含参数)运行代码:

$ cargo run
   Compiling minigrep v0.1.0 (file:///projects/minigrep)
    Finished dev [unoptimized + debuginfo] target(s) in 0.61s
     Running `target/debug/minigrep`
[src/main.rs:5] args = [
    "target/debug/minigrep",
]
$ cargo run -- needle haystack
   Compiling minigrep v0.1.0 (file:///projects/minigrep)
    Finished dev [unoptimized + debuginfo] target(s) in 1.57s
     Running `target/debug/minigrep needle haystack`
[src/main.rs:5] args = [
    "target/debug/minigrep",
    "needle",
    "haystack",
]

注意 vector 的第一个值是 "target/debug/minigrep",它是我们二进制文件的名称。这与 C 中的参数列表的行为相匹配,让程序使用在执行时调用它们的名称。如果要在消息中打印它或者根据用于调用程序的命令行别名更改程序的行为,通常可以方便地访问程序名称,不过考虑到本章的目的,我们将忽略它并只保存所需的两个参数。

将参数值保存进变量

目前程序可以访问指定为命令行参数的值。现在需要将这两个参数的值保存进变量这样就可以在程序的余下部分使用这些值了。让我们如示例 12-2 这样做:

文件名:src/main.rs

use std::env;

fn main() {
    let args: Vec<String> = env::args().collect();

    let query = &args[1];
    let file_path = &args[2];

    println!("Searching for {}", query);
    println!("In file {}", file_path);
}

示例 12-2:创建变量来存放查询参数和文件路径参数

正如之前打印出 vector 时所所看到的,程序的名称占据了 vector 的第一个值 args[0],所以我们从索引为 1 的参数开始。minigrep 获取的第一个参数是需要搜索的字符串,所以将其将第一个参数的引用存放在变量 query 中。第二个参数将是文件路径,所以将第二个参数的引用放入变量 file_path 中。

我们将临时打印出这些变量的值来证明代码如我们期望的那样工作。使用参数 testsample.txt 再次运行这个程序:

$ cargo run -- test sample.txt
   Compiling minigrep v0.1.0 (file:///projects/minigrep)
    Finished dev [unoptimized + debuginfo] target(s) in 0.0s
     Running `target/debug/minigrep test sample.txt`
Searching for test
In file sample.txt

好的,它可以工作!我们将所需的参数值保存进了对应的变量中。之后会增加一些错误处理来应对类似用户没有提供参数的情况,不过现在我们将忽略它们并开始增加读取文件功能。

读取文件

ch12-02-reading-a-file.md
commit 02a168ed346042f07010f8b65b4eeed623dd31d1

现在我们要增加读取由 file_path 命令行参数指定的文件的功能。首先,需要一个用来测试的示例文件:我们会用一个拥有多行少量文本且有一些重复单词的文件。示例 12-3 是一首艾米莉·狄金森(Emily Dickinson)的诗,它正适合这个工作!在项目根目录创建一个文件 poem.txt,并输入诗 "I'm nobody! Who are you?":

文件名:poem.txt

I'm nobody! Who are you?
Are you nobody, too?
Then there's a pair of us - don't tell!
They'd banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

示例 12-3:艾米莉·狄金森的诗 “I’m nobody! Who are you?”,一个好的测试用例

创建完这个文件之后,修改 src/main.rs 并增加如示例 12-4 所示的打开文件的代码:

文件名:src/main.rs

use std::env;
use std::fs;

fn main() {
    // --snip--
    let args: Vec<String> = env::args().collect();

    let query = &args[1];
    let file_path = &args[2];

    println!("Searching for {}", query);
    println!("In file {}", file_path);

    let contents = fs::read_to_string(file_path)
        .expect("Should have been able to read the file");

    println!("With text:\n{contents}");
}

示例 12-4:读取第二个参数所指定的文件内容

首先,我们增加了一个 use 语句来引入标准库中的相关部分:我们需要 std::fs 来处理文件。

main 中新增了一行语句:fs::read_to_string 接受 file_path,打开文件,接着返回包含其内容的 std::io::Result<String>

在这些代码之后,我们再次增加了临时的 println! 打印出读取文件之后 contents 的值,这样就可以检查目前为止的程序能否工作。

尝试运行这些代码,随意指定一个字符串作为第一个命令行参数(因为还未实现搜索功能的部分)而将 poem.txt 文件将作为第二个参数:

$ cargo run -- the poem.txt
   Compiling minigrep v0.1.0 (file:///projects/minigrep)
    Finished dev [unoptimized + debuginfo] target(s) in 0.0s
     Running `target/debug/minigrep the poem.txt`
Searching for the
In file poem.txt
With text:
I'm nobody! Who are you?
Are you nobody, too?
Then there's a pair of us - don't tell!
They'd banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

好的!代码读取并打印出了文件的内容。虽然它还有一些瑕疵:此时 main 函数有着多个职能,通常函数只负责一个功能的话会更简洁并易于维护。另一个问题是没有尽可能的处理错误。虽然我们的程序还很小,这些瑕疵并不是什么大问题,不过随着程序功能的丰富,将会越来越难以用简单的方法修复它们。在开发程序时,及早开始重构是一个最佳实践,因为重构少量代码时要容易的多,所以让我们现在就开始吧。

重构改进模块性和错误处理

ch12-03-improving-error-handling-and-modularity.md
commit 83788ff212a3281328e2f8f223ce9e0f69220b97

为了改善我们的程序这里有四个问题需要修复,而且它们都与程序的组织方式和如何处理潜在错误有关。第一,main 现在进行了两个任务:它解析了参数并打开了文件。对于一个这样的小函数,这并不是一个大问题。然而如果 main 中的功能持续增加,main 函数处理的独立任务也会增加。当函数承担了更多责任,它就更难以推导,更难以测试,并且更难以在不破坏其他部分的情况下做出修改。最好能分离出功能以便每个函数就负责一个任务。

这同时也关系到第二个问题:queryfile_path 是程序中的配置变量,而像 contents 则用来执行程序逻辑。随着 main 函数的增长,就需要引入更多的变量到作用域中,而当作用域中有更多的变量时,将更难以追踪每个变量的目的。最好能将配置变量组织进一个结构,这样就能使它们的目的更明确了。

第三个问题是如果打开文件失败我们使用 expect 来打印出错误信息,不过这个错误信息只是说 Should have been able to read the file。读取文件失败的原因有多种:例如文件不存在,或者没有打开此文件的权限。目前,无论处于何种情况,我们只是打印出“文件读取出现错误”的信息,这并没有给予使用者具体的信息!

第四,我们不停地使用 expect 来处理不同的错误,如果用户没有指定足够的参数来运行程序,他们会从 Rust 得到 index out of bounds 错误,而这并不能明确地解释问题。如果所有的错误处理都位于一处,这样将来的维护者在需要修改错误处理逻辑时就只需要考虑这一处代码。将所有的错误处理都放在一处也有助于确保我们打印的错误信息对终端用户来说是有意义的。

让我们通过重构项目来解决这些问题。

二进制项目的关注分离

main 函数负责多个任务的组织问题在许多二进制项目中很常见。所以 Rust 社区开发出一类在 main 函数开始变得庞大时进行二进制程序的关注分离的指导。这些过程有如下步骤:

  • 将程序拆分成 main.rslib.rs 并将程序的逻辑放入 lib.rs 中。
  • 当命令行解析逻辑比较小时,可以保留在 main.rs 中。
  • 当命令行解析开始变得复杂时,也同样将其从 main.rs 提取到 lib.rs 中。

经过这些过程之后保留在 main 函数中的责任应该被限制为:

  • 使用参数值调用命令行解析逻辑
  • 设置任何其他的配置
  • 调用 lib.rs 中的 run 函数
  • 如果 run 返回错误,则处理这个错误

这个模式的一切就是为了关注分离:main.rs 处理程序运行,而 lib.rs 处理所有的真正的任务逻辑。因为不能直接测试 main 函数,这个结构通过将所有的程序逻辑移动到 lib.rs 的函数中使得我们可以测试它们。仅仅保留在 main.rs 中的代码将足够小以便阅读就可以验证其正确性。让我们遵循这些步骤来重构程序。

提取参数解析器

首先,我们将解析参数的功能提取到一个 main 将会调用的函数中,为将命令行解析逻辑移动到 src/lib.rs 中做准备。示例 12-5 中展示了新 main 函数的开头,它调用了新函数 parse_config。目前它仍将定义在 src/main.rs 中:

文件名:src/main.rs

use std::env;
use std::fs;

fn main() {
    let args: Vec<String> = env::args().collect();

    let (query, file_path) = parse_config(&args);

    // --snip--

    println!("Searching for {}", query);
    println!("In file {}", file_path);

    let contents = fs::read_to_string(file_path)
        .expect("Should have been able to read the file");

    println!("With text:\n{contents}");
}

fn parse_config(args: &[String]) -> (&str, &str) {
    let query = &args[1];
    let file_path = &args[2];

    (query, file_path)
}

示例 12-5:从 main 中提取出 parse_config 函数

我们仍然将命令行参数收集进一个 vector,不过不同于在 main 函数中将索引 1 的参数值赋值给变量 query 和将索引 2 的值赋值给变量 file_path,我们将整个 vector 传递给 parse_config 函数。接着 parse_config 函数将包含决定哪个参数该放入哪个变量的逻辑,并将这些值返回到 main。仍然在 main 中创建变量 queryfile_path,不过 main 不再负责处理命令行参数与变量如何对应。

这对重构我们这小程序可能有点大材小用,不过我们将采用小的、增量的步骤进行重构。在做出这些改变之后,再次运行程序并验证参数解析是否仍然正常。经常验证你的进展是一个好习惯,这样在遇到问题时能帮助你定位问题的成因。

组合配置值

我们可以采取另一个小的步骤来进一步改善这个函数。现在函数返回一个元组,不过立刻又将元组拆成了独立的部分。这是一个我们可能没有进行正确抽象的信号。

另一个表明还有改进空间的迹象是 parse_config 名称的 config 部分,它暗示了我们返回的两个值是相关的并都是一个配置值的一部分。目前除了将这两个值组合进元组之外并没有表达这个数据结构的意义:我们可以将这两个值放入一个结构体并给每个字段一个有意义的名字。这会让未来的维护者更容易理解不同的值如何相互关联以及它们的目的。

注意:一些同学将这种在复杂类型更为合适的场景下使用基本类型的反模式称为 基本类型偏执primitive obsession)。

示例 12-6 展示了 parse_config 函数的改进。

文件名:src/main.rs

use std::env;
use std::fs;

fn main() {
    let args: Vec<String> = env::args().collect();

    let config = parse_config(&args);

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    let contents = fs::read_to_string(config.file_path)
        .expect("Should have been able to read the file");

    // --snip--

    println!("With text:\n{contents}");
}

struct Config {
    query: String,
    file_path: String,
}

fn parse_config(args: &[String]) -> Config {
    let query = args[1].clone();
    let file_path = args[2].clone();

    Config { query, file_path }
}

示例 12-6:重构 parse_config 返回一个 Config 结构体实例

新定义的结构体 Config 中包含字段 queryfile_pathparse_config 的签名表明它现在返回一个 Config 值。在之前的 parse_config 函数体中,我们返回了引用 argsString 值的字符串 slice,现在我们定义 Config 来包含拥有所有权的 String 值。main 中的 args 变量是参数值的所有者并只允许 parse_config 函数借用它们,这意味着如果 Config 尝试获取 args 中值的所有权将违反 Rust 的借用规则。

还有许多不同的方式可以处理 String 的数据,而最简单但有些不太高效的方式是调用这些值的 clone 方法。这会生成 Config 实例可以拥有的数据的完整拷贝,不过会比储存字符串数据的引用消耗更多的时间和内存。不过拷贝数据使得代码显得更加直白因为无需管理引用的生命周期,所以在这种情况下牺牲一小部分性能来换取简洁性的取舍是值得的。

使用 clone 的权衡取舍

由于其运行时消耗,许多 Rustacean 之间有一个趋势是倾向于避免使用 clone 来解决所有权问题。在关于迭代器的第十三章中,我们将会学习如何更有效率的处理这种情况,不过现在,复制一些字符串来取得进展是没有问题的,因为只会进行一次这样的拷贝,而且文件路径和要搜索的字符串都比较短。在第一轮编写时拥有一个可以工作但有点低效的程序要比尝试过度优化代码更好一些。随着你对 Rust 更加熟练,将能更轻松的直奔合适的方法,不过现在调用 clone 是完全可以接受的。

我们更新 mainparse_config 返回的 Config 实例放入变量 config 中,并将之前分别使用 queryfile_path 变量的代码更新为现在的使用 Config 结构体的字段的代码。

现在代码更明确的表现了我们的意图,queryfile_path 是相关联的并且它们的目的是配置程序如何工作。任何使用这些值的代码就知道在 config 实例中对应目的的字段名中寻找它们。

创建一个 Config 的构造函数

目前为止,我们将负责解析命令行参数的逻辑从 main 提取到了 parse_config 函数中,这有助于我们看清值 queryfile_path 是相互关联的并应该在代码中表现这种关系。接着我们增加了 Config 结构体来描述 queryfile_path 的相关性,并能够从 parse_config 函数中将这些值的名称作为结构体字段名称返回。

所以现在 parse_config 函数的目的是创建一个 Config 实例,我们可以将 parse_config 从一个普通函数变为一个叫做 new 的与结构体关联的函数。做出这个改变使得代码更符合习惯:可以像标准库中的 String 调用 String::new 来创建一个该类型的实例那样,将 parse_config 变为一个与 Config 关联的 new 函数。示例 12-7 展示了需要做出的修改:

文件名:src/main.rs

use std::env;
use std::fs;

fn main() {
    let args: Vec<String> = env::args().collect();

    let config = Config::new(&args);

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    let contents = fs::read_to_string(config.file_path)
        .expect("Should have been able to read the file");

    println!("With text:\n{contents}");

    // --snip--
}

// --snip--

struct Config {
    query: String,
    file_path: String,
}

impl Config {
    fn new(args: &[String]) -> Config {
        let query = args[1].clone();
        let file_path = args[2].clone();

        Config { query, file_path }
    }
}

示例 12-7:将 parse_config 变为 Config::new

这里将 main 中调用 parse_config 的地方更新为调用 Config::new。我们将 parse_config 的名字改为 new 并将其移动到 impl 块中,这使得 new 函数与 Config 相关联。再次尝试编译并确保它可以工作。

修复错误处理

现在我们开始修复错误处理。回忆一下之前提到过如果 args vector 包含少于 3 个项并尝试访问 vector 中索引 1 或索引 2 的值会造成程序 panic。尝试不带任何参数运行程序;这将看起来像这样:

$ cargo run
   Compiling minigrep v0.1.0 (file:///projects/minigrep)
    Finished dev [unoptimized + debuginfo] target(s) in 0.0s
     Running `target/debug/minigrep`
thread 'main' panicked at 'index out of bounds: the len is 1 but the index is 1', src/main.rs:27:21
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

index out of bounds: the len is 1 but the index is 1 是一个针对程序员的错误信息,然而这并不能真正帮助终端用户理解发生了什么和他们应该做什么。现在就让我们修复它吧。

改善错误信息

在示例 12-8 中,在 new 函数中增加了一个检查在访问索引 12 之前检查 slice 是否足够长。如果 slice 不够长,程序会打印一个更好的错误信息并 panic:

文件名:src/main.rs

use std::env;
use std::fs;

fn main() {
    let args: Vec<String> = env::args().collect();

    let config = Config::new(&args);

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    let contents = fs::read_to_string(config.file_path)
        .expect("Should have been able to read the file");

    println!("With text:\n{contents}");
}

struct Config {
    query: String,
    file_path: String,
}

impl Config {
    // --snip--
    fn new(args: &[String]) -> Config {
        if args.len() < 3 {
            panic!("not enough arguments");
        }
        // --snip--

        let query = args[1].clone();
        let file_path = args[2].clone();

        Config { query, file_path }
    }
}

示例 12-8:增加一个参数数量检查

这类似于 示例 9-13 中的 Guess::new 函数,那里如果 value 参数超出了有效值的范围就调用 panic!。不同于检查值的范围,这里检查 args 的长度至少是 3,而函数的剩余部分则可以在假设这个条件成立的基础上运行。如果 args 少于 3 个项,则这个条件将为真,并调用 panic! 立即终止程序。

有了 new 中这几行额外的代码,再次不带任何参数运行程序并看看现在错误看起来像什么:

$ cargo run
   Compiling minigrep v0.1.0 (file:///projects/minigrep)
    Finished dev [unoptimized + debuginfo] target(s) in 0.0s
     Running `target/debug/minigrep`
thread 'main' panicked at 'not enough arguments', src/main.rs:26:13
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

这个输出就好多了,现在有了一个合理的错误信息。然而,还是有一堆额外的信息我们不希望提供给用户。所以在这里使用示例 9-9 中的技术可能不是最好的;正如 第九章 所讲到的一样,panic! 的调用更趋向于程序上的问题而不是使用上的问题。相反我们可以使用第九章学习的另一个技术 —— 返回一个可以表明成功或错误的 Result

new 中返回 Result 而不是调用 panic!

我们可以选择返回一个 Result 值,它在成功时会包含一个 Config 的实例,而在错误时会描述问题。我们还将把函数名从new改为build,因为许多程序员希望 new 函数永远不会失败。当 Config::newmain 交流时,可以使用 Result 类型来表明这里存在问题。接着修改 mainErr 成员转换为对用户更友好的错误,而不是 panic! 调用产生的关于 thread 'main'RUST_BACKTRACE 的文本。

示例 12-9 展示了为了返回 ResultConfig::new 的返回值和函数体中所需的改变。注意这还不能编译,直到下一个示例同时也更新了 main 之后。

文件名:src/main.rs

use std::env;
use std::fs;

fn main() {
    let args: Vec<String> = env::args().collect();

    let config = Config::new(&args);

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    let contents = fs::read_to_string(config.file_path)
        .expect("Should have been able to read the file");

    println!("With text:\n{contents}");
}

struct Config {
    query: String,
    file_path: String,
}

impl Config {
    fn build(args: &[String]) -> Result<Config, &'static str> {
        if args.len() < 3 {
            return Err("not enough arguments");
        }

        let query = args[1].clone();
        let file_path = args[2].clone();

        Ok(Config { query, file_path })
    }
}

示例 12-9:从 Config::build 中返回 Result

现在 build 函数返回一个 Result,在成功时带有一个 Config 实例而在出现错误时带有一个 &'static str。回忆一下第十章 “静态生命周期” 中讲到 &'static str 是字符串字面值的类型,也是目前的错误信息。

build 函数体中有两处修改:当没有足够参数时不再调用 panic!,而是返回 Err 值。同时我们将 Config 返回值包装进 Ok 成员中。这些修改使得函数符合其新的类型签名。

通过让 Config::build 返回一个 Err 值,这就允许 main 函数处理 build 函数返回的 Result 值并在出现错误的情况更明确的结束进程。

调用 Config::build 并处理错误

为了处理错误情况并打印一个对用户友好的信息,我们需要像示例 12-10 那样更新 main 函数来处理现在 Config::build 返回的 Result。另外还需要手动实现原先由 panic!负责的工作,即以非零错误码退出命令行工具的工作。非零的退出状态是一个惯例信号,用来告诉调用程序的进程:该程序以错误状态退出了。

文件名:src/main.rs

use std::env;
use std::fs;
use std::process;

fn main() {
    let args: Vec<String> = env::args().collect();

    let config = Config::build(&args).unwrap_or_else(|err| {
        println!("Problem parsing arguments: {err}");
        process::exit(1);
    });

    // --snip--

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    let contents = fs::read_to_string(config.file_path)
        .expect("Should have been able to read the file");

    println!("With text:\n{contents}");
}

struct Config {
    query: String,
    file_path: String,
}

impl Config {
    fn build(args: &[String]) -> Result<Config, &'static str> {
        if args.len() < 3 {
            return Err("not enough arguments");
        }

        let query = args[1].clone();
        let file_path = args[2].clone();

        Ok(Config { query, file_path })
    }
}

示例 12-10:如果新建 Config 失败则使用错误码退出

在上面的示例中,使用了一个之前没有详细说明的方法:unwrap_or_else,它定义于标准库的 Result<T, E> 上。使用 unwrap_or_else 可以进行一些自定义的非 panic! 的错误处理。当 ResultOk 时,这个方法的行为类似于 unwrap:它返回 Ok 内部封装的值。然而,当其值是 Err 时,该方法会调用一个 闭包closure),也就是一个我们定义的作为参数传递给 unwrap_or_else 的匿名函数。第十三章 会更详细的介绍闭包。现在你需要理解的是 unwrap_or_else 会将 Err 的内部值,也就是示例 12-9 中增加的 not enough arguments 静态字符串的情况,传递给闭包中位于两道竖线间的参数 err。闭包中的代码在其运行时可以使用这个 err 值。

我们新增了一个 use 行来从标准库中导入 process。在错误的情况闭包中将被运行的代码只有两行:我们打印出了 err 值,接着调用了 std::process::exitprocess::exit 会立即停止程序并将传递给它的数字作为退出状态码。这类似于示例 12-8 中使用的基于 panic! 的错误处理,除了不会再得到所有的额外输出了。让我们试试:

$ cargo run
   Compiling minigrep v0.1.0 (file:///projects/minigrep)
    Finished dev [unoptimized + debuginfo] target(s) in 0.48s
     Running `target/debug/minigrep`
Problem parsing arguments: not enough arguments

非常好!现在输出对于用户来说就友好多了。

main 提取逻辑

现在我们完成了配置解析的重构:让我们转向程序的逻辑。正如 “二进制项目的关注分离” 部分所展开的讨论,我们将提取一个叫做 run 的函数来存放目前 main 函数中不属于设置配置或处理错误的所有逻辑。一旦完成这些,main 函数将简明得足以通过观察来验证,而我们将能够为所有其他逻辑编写测试。

示例 12-11 展示了提取出来的 run 函数。目前我们只进行小的增量式的提取函数的改进。我们仍将在 src/main.rs 中定义这个函数:

文件名:src/main.rs

use std::env;
use std::fs;
use std::process;

fn main() {
    // --snip--

    let args: Vec<String> = env::args().collect();

    let config = Config::build(&args).unwrap_or_else(|err| {
        println!("Problem parsing arguments: {err}");
        process::exit(1);
    });

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    run(config);
}

fn run(config: Config) {
    let contents = fs::read_to_string(config.file_path)
        .expect("Should have been able to read the file");

    println!("With text:\n{contents}");
}

// --snip--

struct Config {
    query: String,
    file_path: String,
}

impl Config {
    fn build(args: &[String]) -> Result<Config, &'static str> {
        if args.len() < 3 {
            return Err("not enough arguments");
        }

        let query = args[1].clone();
        let file_path = args[2].clone();

        Ok(Config { query, file_path })
    }
}

示例 12-11:提取 run 函数来包含剩余的程序逻辑

现在 run 函数包含了 main 中从读取文件开始的剩余的所有逻辑。run 函数获取一个 Config 实例作为参数。

run 函数中返回错误

通过将剩余的逻辑分离进 run 函数而不是留在 main 中,就可以像示例 12-9 中的 Config::build 那样改进错误处理。不再通过 expect 允许程序 panic,run 函数将会在出错时返回一个 Result<T, E>。这让我们进一步以一种对用户友好的方式统一 main 中的错误处理。示例 12-12 展示了 run 签名和函数体中的改变:

文件名:src/main.rs

use std::env;
use std::fs;
use std::process;
use std::error::Error;

// --snip--


fn main() {
    let args: Vec<String> = env::args().collect();

    let config = Config::build(&args).unwrap_or_else(|err| {
        println!("Problem parsing arguments: {err}");
        process::exit(1);
    });

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    run(config);
}

fn run(config: Config) -> Result<(), Box<dyn Error>> {
    let contents = fs::read_to_string(config.file_path)?;

    println!("With text:\n{contents}");

    Ok(())
}

struct Config {
    query: String,
    file_path: String,
}

impl Config {
    fn build(args: &[String]) -> Result<Config, &'static str> {
        if args.len() < 3 {
            return Err("not enough arguments");
        }

        let query = args[1].clone();
        let file_path = args[2].clone();

        Ok(Config { query, file_path })
    }
}

示例 12-12:修改 run 函数返回 Result

这里我们做出了三个明显的修改。首先,将 run 函数的返回类型变为 Result<(), Box<dyn Error>>。之前这个函数返回 unit 类型 (),现在它仍然保持作为 Ok 时的返回值。

对于错误类型,使用了 trait 对象 Box<dyn Error>(在开头使用了 use 语句将 std::error::Error 引入作用域)。第十七章 会涉及 trait 对象。目前只需知道 Box<dyn Error> 意味着函数会返回实现了 Error trait 的类型,不过无需指定具体将会返回的值的类型。这提供了在不同的错误场景可能有不同类型的错误返回值的灵活性。这也就是 dyn,它是 “动态的”(“dynamic”)的缩写。

第二个改变是去掉了 expect 调用并替换为 第九章 讲到的 ?。不同于遇到错误就 panic!? 会从函数中返回错误值并让调用者来处理它。

第三个修改是现在成功时这个函数会返回一个 Ok 值。因为 run 函数签名中声明成功类型返回值是 (),这意味着需要将 unit 类型值包装进 Ok 值中。Ok(()) 一开始看起来有点奇怪,不过这样使用 () 是惯用的做法,表明调用 run 函数只是为了它的副作用;函数并没有返回什么有意义的值。

上述代码能够编译,不过会有一个警告:

$ cargo run the poem.txt
   Compiling minigrep v0.1.0 (file:///projects/minigrep)
warning: unused `Result` that must be used
  --> src/main.rs:19:5
   |
19 |     run(config);
   |     ^^^^^^^^^^^^
   |
   = note: `#[warn(unused_must_use)]` on by default
   = note: this `Result` may be an `Err` variant, which should be handled

warning: `minigrep` (bin "minigrep") generated 1 warning
    Finished dev [unoptimized + debuginfo] target(s) in 0.71s
     Running `target/debug/minigrep the poem.txt`
Searching for the
In file poem.txt
With text:
I'm nobody! Who are you?
Are you nobody, too?
Then there's a pair of us - don't tell!
They'd banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

Rust 提示我们的代码忽略了 Result 值,它可能表明这里存在一个错误。但我们却没有检查这里是否有一个错误,而编译器提醒我们这里应该有一些错误处理代码!现在就让我们修正这个问题。

处理 mainrun 返回的错误

我们将检查错误并使用类似示例 12-10 中 Config::build 处理错误的技术来处理它们,不过有一些细微的不同:

文件名:src/main.rs

use std::env;
use std::error::Error;
use std::fs;
use std::process;

fn main() {
    // --snip--

    let args: Vec<String> = env::args().collect();

    let config = Config::build(&args).unwrap_or_else(|err| {
        println!("Problem parsing arguments: {err}");
        process::exit(1);
    });

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    if let Err(e) = run(config) {
        println!("Application error: {e}");
        process::exit(1);
    }
}

fn run(config: Config) -> Result<(), Box<dyn Error>> {
    let contents = fs::read_to_string(config.file_path)?;

    println!("With text:\n{contents}");

    Ok(())
}

struct Config {
    query: String,
    file_path: String,
}

impl Config {
    fn build(args: &[String]) -> Result<Config, &'static str> {
        if args.len() < 3 {
            return Err("not enough arguments");
        }

        let query = args[1].clone();
        let file_path = args[2].clone();

        Ok(Config { query, file_path })
    }
}

我们使用 if let 来检查 run 是否返回一个 Err 值,不同于 unwrap_or_else,并在出错时调用 process::exit(1)run 并不返回像 Config::build 返回的 Config 实例那样需要 unwrap 的值。因为 run 在成功时返回 (),而我们只关心检测错误,所以并不需要 unwrap_or_else 来返回未封装的值,因为它只会是 ()

不过两个例子中 if letunwrap_or_else 的函数体都一样:打印出错误并退出。

将代码拆分到库 crate

现在我们的 minigrep 项目看起来好多了!现在我们将要拆分 src/main.rs 并将一些代码放入 src/lib.rs,这样就能测试它们并拥有一个含有更少功能的 main 函数。

让我们将所有不是 main 函数的代码从 src/main.rs 移动到新文件 src/lib.rs 中:

  • run 函数定义
  • 相关的 use 语句
  • Config 的定义
  • Config::build 函数定义

现在 src/lib.rs 的内容应该看起来像示例 12-13(为了简洁省略了函数体)。注意直到下一个示例修改完 src/main.rs 之后,代码还不能编译:

文件名:src/lib.rs

use std::error::Error;
use std::fs;

pub struct Config {
    pub query: String,
    pub file_path: String,
}

impl Config {
    pub fn build(args: &[String]) -> Result<Config, &'static str> {
        // --snip--
        if args.len() < 3 {
            return Err("not enough arguments");
        }

        let query = args[1].clone();
        let file_path = args[2].clone();

        Ok(Config { query, file_path })
    }
}

pub fn run(config: Config) -> Result<(), Box<dyn Error>> {
    // --snip--
    let contents = fs::read_to_string(config.file_path)?;

    println!("With text:\n{contents}");

    Ok(())
}

示例 12-13:将 Configrun 移动到 src/lib.rs

这里使用了公有的 pub 关键字:在 Config、其字段和其 build 方法,以及 run 函数上。现在我们有了一个拥有可以测试的公有 API 的库 crate 了。

现在需要在 src/main.rs 中将移动到 src/lib.rs 的代码引入二进制 crate 的作用域中,如示例 12-14 所示:

文件名:src/main.rs

use std::env;
use std::process;

use minigrep::Config;

fn main() {
    // --snip--
    let args: Vec<String> = env::args().collect();

    let config = Config::build(&args).unwrap_or_else(|err| {
        println!("Problem parsing arguments: {err}");
        process::exit(1);
    });

    println!("Searching for {}", config.query);
    println!("In file {}", config.file_path);

    if let Err(e) = minigrep::run(config) {
        // --snip--
        println!("Application error: {e}");
        process::exit(1);
    }
}

示例 12-14:将 minigrep crate 引入 src/main.rs 的作用域中

我们添加了一行 use minigrep::Config,它将 Config 类型引入作用域,并使用 crate 名称作为 run 函数的前缀。通过这些重构,所有功能应该能够联系在一起并运行了。运行 cargo run 来确保一切都正确的衔接在一起。

哇哦!我们做了大量的工作,不过我们为将来的成功打下了基础。现在处理错误将更容易,同时代码也更加模块化。从现在开始几乎所有的工作都将在 src/lib.rs 中进行。

让我们利用这些新创建的模块的优势来进行一些在旧代码中难以展开的工作,这些工作在新代码中非常容易实现,那就是:编写测试!

采用测试驱动开发完善库的功能

ch12-04-testing-the-librarys-functionality.md
commit 8fd2327e4135876b368cc2793eb4a7e455b691f0

现在我们将逻辑提取到了 src/lib.rs 并将所有的参数解析和错误处理留在了 src/main.rs 中,为代码的核心功能编写测试将更加容易。我们可以直接使用多种参数调用函数并检查返回值而无需从命令行运行二进制文件了。

在这一部分,我们将遵循测试驱动开发(Test Driven Development, TDD)的模式来逐步增加 minigrep 的搜索逻辑。它遵循如下步骤:

  1. 编写一个失败的测试,并运行它以确保它失败的原因是你所期望的。
  2. 编写或修改足够的代码来使新的测试通过。
  3. 重构刚刚增加或修改的代码,并确保测试仍然能通过。
  4. 从步骤 1 开始重复!

虽然这只是众多编写软件的方法之一,不过 TDD 有助于驱动代码的设计。在编写能使测试通过的代码之前编写测试有助于在开发过程中保持高测试覆盖率。

我们将测试驱动实现实际在文件内容中搜索查询字符串并返回匹配的行示例的功能。我们将在一个叫做 search 的函数中增加这些功能。

编写失败测试

去掉 src/lib.rssrc/main.rs 中用于检查程序行为的 println! 语句,因为不再真正需要它们了。接着我们会像 第十一章 那样增加一个 test 模块和一个测试函数。测试函数指定了 search 函数期望拥有的行为:它会获取一个需要查询的字符串和用来查询的文本,并只会返回包含请求的文本行。示例 12-15 展示了这个测试,它还不能编译:

文件名:src/lib.rs

use std::error::Error;
use std::fs;

pub struct Config {
    pub query: String,
    pub file_path: String,
}

impl Config {
    pub fn build(args: &[String]) -> Result<Config, &'static str> {
        if args.len() < 3 {
            r